错乱瞎写

1. 线性方程组

省流:初等行变换化为一个上三角,然后瞬间出解

inline bool z(const double& x){return abs(x)<eps;}
int Gauss() // O(n^3)
{
int c, r;
for (c=1, r=1; c<=n; c++)
{
int m = r;
for (int i=r; i<=n; i++)
if (abs(a[i][c]) > abs(a[m][c])) m = i;
if (z(a[m][c])) continue;
for (int i=c; i<=n+1; i++) swap(a[m][i],a[r][i]);
for (int i=n+1; i>=c; i--) a[r][i] /= a[r][c];
for (int i=r+1; i<=n; i++)
if (!z(a[i][c]))
for (int j=n+1; j>=c; j--) a[i][j] -= a[r][j] * a[i][c];
r++;
}
for (int i=n; i>=0; i--) //回代
for (int j=i+1; j<=n; j++) a[i][n+1] -= a[i][j] * a[j][n+1];
if (r <= n)
{
for (int i=r; i<=n; i++)
if (!z(a[i][n+1])) return -1;
return 0;
} return 1;
}

2. 球形空间产生器sphere

\((r_1,r_2,\cdots,r_n)\)

\[\forall i:\sum (r_i-x_{k,i})^2=R
\]
\[\forall i:\sum r_i^2-2\sum r_ix_{k,i}+\sum x_{k,i}^2=R
\]
\[\forall i:2\sum r_ix_{k,i}=\sum x_{k,i}^2-c
\]
\[\sum 2(x_{p,i}-x_{q,i})r_i = \sum (x_{p,i}^2-x_{q,i}^2)
\]

3. 臭气弹

两种思路:

第一种:暴算

设一个到达 \(u\) 点的概率 \(dp_u\),由于全概率公式

\[\boxed{\mathbb P(A) = \sum \mathbb P(B_i)\mathbb P(A|B_i)}
\]

所以

\[dp_u=\sum_{v\to u}\dfrac{1-P/Q}{\deg v}\cdot dp_v
\]

Gauss 消元解出来即可 .

特别的,点 \(1\) 还可以从天而降(概率为 \(1\)),所以 \(dp_1\gets dp_1+1\) .

于是答案是 \(\dfrac QP dp_u\) 或者下面那个带 \(\sum\) 的做法 = =

第二种:期望

令 \(dp_u\) 表示到达 \(u\) 点的期望次数,这里可以拆点(炸 / 不炸)也可以直接搞

\(dp\) 随便求(高斯消元解 dp),然后每个点的概率就是

\[\mathbb P(u)=\dfrac{dp_u}{\sum dp_i}
\]

eps 要开到 \(10^{-9}\),要不然精度不够)

4. 开关问题

也是两种思路:

第一种是列出一个同余 \(2\) 的线性方程组,然后发现初等行变换依然成立;

第二种是列出一个 xor 线性方程组,初等行变换全部改成 xor 消;

不管哪一种,最后找出自由元数量 \(r\),\(2^r\) 就是答案 .

Gauss 消元法的更多相关文章

  1. 【Java例题】4.3 3. 使用Gauss消元法求解n元一次方程组的根,

    3. 使用Gauss消元法求解n元一次方程组的根,举例,三元一次方程组:0.729x1+0.81x2+0.9x3=0.6867x1+x2+x3=0.83381.331x1+1.21x2+1.1x3=1 ...

  2. [bzoj1770][Usaco2009 Nov]lights 燈——Gauss消元法

    题意 给定一个无向图,初始状态所有点均为黑,如果更改一个点,那么它和与它相邻的点全部会被更改.一个点被更改当它的颜色与之前相反. 题解 第一道Gauss消元题.所谓gauss消元,就是使用初等行列式变 ...

  3. C# 列主元素(Gauss)消去法 计算一元多次方程组

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  4. C# 顺序高斯(Gauss)消去法计算一元多次方程组

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  5. Function Set in OPEN CASCADE

    Function Set in OPEN CASCADE eryar@163.com Abstract. The common math algorithms library provides a C ...

  6. OpenCASCADE Interpolation - Lagrange

    OpenCASCADE Interpolation - Lagrange eryar@163.com Abstract. Power basis polynomial is the most simp ...

  7. FORTRAN程序设计权威指南

    <FORTRAN程序设计权威指南> 基本信息 作者: 白海波    出版社:机械工业出版社 ISBN:9787111421146 上架时间:2013-7-23 出版日期:2013 年7月 ...

  8. OpenCASCADE 3 Planes Intersection

    OpenCASCADE 3 Planes Intersection eryar@163.com Abstract. OpenCASCADE provides the algorithm to sear ...

  9. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

随机推荐

  1. 自增特性,外键,级联更新与级联删除,表间关系,SELECT用法,GROUP BY

    自增特性 自动增长的作用: 问题:为数据表设置主键约束后,每次插入记录时,如果插入的值已经存在,会插入失败. 如何解决:为主键生成自动增长的值. 自动增长的语法: 字段名 数据类型 AUTO_INCR ...

  2. [java并发编程]基于信号量semaphore实现限流器

    目录 一.什么是信号量 二.信号量类Semaphore 三.实现限流器 欢迎关注我的博客,更多精品知识合集 一.什么是信号量 "信号量"在编程术语中使用单词semaphore,那什 ...

  3. @ConfigurationProperties(prefix = "server-options") 抛出 SpringBoot Configuration Annotation Processor not configured 错误

    说明 spring-boot-configuration-processor 包的作用是自动生成 META-INF/spring-configuration-metadata.json 文件,而这个 ...

  4. CA周记 - Build 2022 上开发者最应关注的七大方向主要技术更新

    一年一度的 Microsoft Build 终于来了,带来了非常非常多的新技术和功能更新.不知道各位小伙伴有没有和我一样熬夜看了开幕式和五个核心主题的全过程呢?接下来我和大家来谈一下作为开发者最应关注 ...

  5. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  6. 『忘了再学』Shell基础 — 29、AWK内置变量

    目录 1.AWK内置变量 2.练习说明 (1)$n变量练习 (2)FS变量练习 (3)NF变量和NR变量练习 3.总结: 1.AWK内置变量 AWK内置变量如下表: awk内置变量 作用 $0 代表目 ...

  7. .NetCore实现图片缩放与裁剪 - 基于ImageSharp

    前言 (突然发现断更有段时间了 最近在做博客的时候,需要实现一个类似Lorempixel.LoremPicsum这样的随机图片功能,图片有了,还需要一个根据输入的宽度高度获取图片的功能,由于之前处理图 ...

  8. 领导:谁再用redis过期监听实现关闭订单,立马滚蛋!

    日前拜读阿牛老师的大作 领导:谁再用定时任务实现关闭订单,立马滚蛋! 发现其方案有若干瑕疵,特此抛砖引玉讨论一二. 在电商.支付等领域,往往会有这样的场景,用户下单后放弃支付了,那这笔订单会在指定的时 ...

  9. .NET6接入Skywalking链路追踪完整流程

    一.Skywalking介绍 Skywalking是一款分布式链路追踪组件,什么是链路追踪? 随着微服务架构的流行,服务按照不同的维度进行拆分,一次请求往往需要涉及到多个服务.互联网应用构建在不同的软 ...

  10. zabbix配置邮件报警

    1.yum源安装sendmail,sendmail-cf和mailx 2.关闭postfix,/etc/init.d/postfix stop chkconfig posfix off 3.启动sen ...