这不prufer编码吗,防爆long long就行了啊

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long #define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 157; #define int long long
int C[N][N];
inline void Prepare(int &n){
R(i,0,n){
C[i][0] = 1;
R(j,1,i){
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}
}
int d[N];
#undef int
int main(){
#define int long long
int n;
io >> n;
int sum = 0;
if(n == 1){
io >> d[1];
if(!d[1]){
printf("1");
}
else{
printf("0");
}
return 0;
}
R(i,1,n){
io >> d[i];
if(!d[i]){
printf("0");
return 0;
}
--d[i];
sum += d[i];
} if(sum != n - 2){
printf("0");
return 0;
} Prepare(n); sum = 0;
int ans = 1;
R(i,1,n){
ans *= C[n - 2 - sum][d[i]];
sum += d[i];
} printf("%lld", ans); return 0;
}

Luogu2290 [HNOI2004]树的计数 (组合计数,prufer编码)的更多相关文章

  1. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  2. BZOJ 3162: 独钓寒江雪 树的同构 + 组合 + 计数

    Description Input   Output 求一棵树编号序列不同的方案数: 令 $f[u],g[u]$ 分别表示 $u$ 选/不选 的方案数. 则 $f[u]=\prod_{v\in son ...

  3. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  4. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

  5. 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一 ...

  6. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  7. [HNOI2004]树的计数 prufer数列

    题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...

  8. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

  9. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

随机推荐

  1. 【HEOI2014】大工程<虚树>

    虚树 我们每天都用心思索着,这究竟是为了什么呢?我想我也不知道,只是觉得如果人不思考问题就很无聊. 我觉得虚树不是什么数据结构,就是一种技巧或者工具.它能把树中\(k\)个关键点以\(O(klogk) ...

  2. Web 前端实战(三):雷达图

    前言 在<Canvas 线性图形(五):多边形>实现了绘制多边形的函数.本篇文章将记录如何绘制雷达图.最终实现的效果是这样的: 绘制雷达图 雷达图里外层 如动图中所示,雷达图从里到外一共有 ...

  3. ExtJS 布局-Auto布局(Auto Layout)

    更新记录 2022年5月30日 开启本篇 1.说明 auto布局是大部分容器默认的布局类型. auto布局通常是从上到下进行堆叠,auto布局不会设置子组件的宽度,默认与容器一样的宽度. 类似于HTM ...

  4. SpringBoot之:SpringBoot中使用HATEOAS

    目录 简介 我们的目标 构建Entity和Repository 构建HATEOAS相关的RepresentationModel 构建Controller HATEOAS的意义 总结 简介 HATEOA ...

  5. 全新升级的AOP框架Dora.Interception[3]: 基于特性标注的拦截器注册方式

    在Dora.Interception(github地址,觉得不错不妨给一颗星)中按照约定方式定义的拦截器可以采用多种方式注册到目标方法上.本篇文章介绍最常用的基于"特性标注"的拦截 ...

  6. NC25043 [USACO 2007 Jan S]Protecting the Flowers

    NC25043 [USACO 2007 Jan S]Protecting the Flowers 题目 题目描述 Farmer John went to cut some wood and left ...

  7. Elasticsearch深度应用(下)

    Query文档搜索机制剖析 1. query then fetch(默认搜索方式) 搜索步骤如下: 发送查询到每个shard 找到所有匹配的文档,并使用本地的Term/Document Frequer ...

  8. 配置git的ssh

    Linux,Windows就在git bash here里面输 ① 初始化git账户 git config --global user.name "Eisen" git confi ...

  9. 《吐血整理》保姆级系列教程-玩转Fiddler抓包教程(4)-会话面板和HTTP会话数据操作详解

    1.简介 按照从上往下,从左往右的计划,今天就轮到介绍和分享Fiddler的会话面板了. 2.会话列表 (Session list) 概览 Fiddler抓取到的每条http请求(每一条称为一个ses ...

  10. WannaRen来袭:螣龙安科带你盘点那些年的勒索病毒

    2020年4月7日,360CERT监测发现网络上出现一款新型勒索病毒wannaRen,该勒索病毒会加密windows系统中几乎所有的文件,并且以.WannaRen作为后缀.360CERT该事件评定:危 ...