LangChain vs Semantic Kernel
每当向他人介绍 Semantic Kernel, 会得到的第一个问题就是 Semantic Kernel 类似于LangChain吗,或者是c# 版本的LangChain吗? 为了全面而不想重复的回答这个问题,因此我写下这篇文章。
在 ChatGPT 之前,构建 集成AI的应用程序的主要分为两个步骤:
- 机器学习工程师/数据科学家创建模型,然后通过 REST API 终结点发布此模型。
- 应用程序开发人员通过传递确定性参数来调用 REST API 终结点。
有了GPT以后 构建与 AI 集成的应用程序过去要简单得多,应用程序员开发人员直接访问OpenAI的REST API,将它集成到我们的应用中,但是真正开始集成的时候才发现挑战不仅仅是调用API,例如:
- 如何将OpenAI与内部知识搜索(内部文档,数据库,SharePoint等)集成
- 如何将OpenAI与其他系统集成,如SAP,ERP,CRM,HR系统,IT票务系统等。
- 如何有效地跟踪聊天对话历史记录
- 如何以可配置的方式将提示实现到代码中(而不是使它们看起来像魔术字符串))
- 如何最小化使用的Token
- 如何在服务限制内和围绕服务配额和限制工作 - 更具体地说,围绕最大请求数/分钟
- 以及更多...
这中间需要有一个业务流程协调程序。该服务编排来自各种依赖项(OpenAI、Azure 搜索、数据库等)的输入和输出,并将其拼接在一起。
- 这种模式可以从微软最近发布的Copilot服务中看出。请注意,GitHub Copilot、M365 Copilot、D365 Copilot 和Security Copilot的架构之间都有一个“Copilot Service”,用于将应用程序与LLM模型和其他服务链接起来。
- 另请注意,微软在架构图中提到了的是“LLM”,而不是“GPT-4”。这是因为业务流程协调程序服务同时使用不同的 LLM 来实现其目的。

这就是像Semantic Kernel和LangChain这样的库的用武之地。这些库可帮助开发人员:
- 管理对话历史记录,这是ChatCompletionAPI 希望开发人员弄清楚的。
- 根据意图规划方法。
- 为该方法实现“链接”
- 管理Memory和服务连接要求(即对话历史记录、外部 API 等)
LangChain目前是“最成熟”(但相当新的)拥有大型开源社区的。第一次提交是在 2022 年10月。
- 它支持Python和TypeScript,其中Python具有更多功能。
- 大多数在线文章都使用Jupyter笔记本 演示 LangChain,LangChai也不把自己被称为“SDK”,它是为习惯于使用笔记本的ML工程师构建的。
- 应用程序开发人员需要弄清楚如何组织代码和使用 LangChain,软件工程方面的组织相对SK 显得差了很多。
- LangChain由Harrison Chase创立,他的职业是ML工程师,更多是从ML 工程师角度架构应用。
- LangChain开源社区的贡献非常活跃,目前已经有29k star。
Semantic Kernel(SK)是相对“较新的”,但它是为开发人员构建的。第一次提交是在 2023 年 2 月。
- 它主要面向 C# 开发人员,它也支持 Python,(功能另请参阅功能奇偶校验文档)。
- 因为它是为开发人员构建的,所以它被称为轻量级 SDK,可帮助开发人员将代码组织到内置于 Planner 中的技能、记忆和连接器中(在此处阅读更多内容)。
- 示例代码中有很多业务流程协调程序 Web 服务的示例。
- SK由一个以软件开发工程能力超强的组织(微软)创立。开源社区规模也相当活跃,目前已经有5.7k star。
- 它是由微软创立的,文档方面做的也非常好,它有一个官方的支持页面和LinkedIn学习课程。
- 由于 SK 在构建时考虑了应用,因此有一个 MS Graph连接器工具包,适用于需要与日历、电子邮件、OneDrive 等集成的方案。
这两个库我们选择使用哪一个,我觉得主要的考虑因素是开发人员的技能,LLM 已经将机器学习的门槛降低到普通开发人员就可以开发AI应用,SK 在帮助应用开发人员开发AI方面的帮助会比LangChain更大,我会选择采用SK来构建AI应用。
LangChain vs Semantic Kernel的更多相关文章
- Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network(GCN全局卷积网络)
作者认为语义分割的两个挑战是分类和定位,而这两个挑战又是比较对立的.对于分类问题,模型需要有变形和旋转不变形,而对于定位问题,模型有需要对变形敏感. 提出的GCN遵循两个主要原则: 1.对定位问题,模 ...
- 谈一谈深度学习之semantic Segmentation
上一次发博客已经是9月份的事了....这段时间公司的事实在是多,有写博客的时间都拿去看paper了..正好春节回来写点东西,也正好对这段时间做一个总结. 首先当然还是好好说点这段时间的主要工作:语义分 ...
- The user's guide what comes in the kernel Documentation directory
The Linux IPMI Driver --------------------- Corey Minyard <minyard@mvista.com> <minyard@acm ...
- Review of Semantic Segmentation with Deep Learning
In this post, I review the literature on semantic segmentation. Most research on semantic segmentati ...
- Fully Convolutional Networks for Semantic Segmentation 译文
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract Convolutional networks are powe ...
- Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning
创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 cha ...
- 图像分割:Semantic/Instance/Panoramic Segmentation
一. 背景介绍 语义分割(Semantic Segmentation):对一张图片上的所有像素点进行分类,同一物体的不同实例不需要单独分割出来. 实例分割(Instance Segmentation) ...
- Linux 内核概述 - Linux Kernel
Linux 内核学习笔记整理. Unix unix 已有40历史,但计算机科学家仍认为其是现存操作系统中最大和最优秀的系统,它已成为一种传奇的存在,历经时间的考验却依然声名不坠. 1973 年,在用 ...
- 04.ubuntu下kvm 命令行安装64位ubuntu报"Couldn't find hvm kernel for Ubuntu tree."的问题
1.安装ubuntu时使用的virt-install的配置: virt-install \ --name test4 \ --ram 1024 \ --disk path=/data/01_ubunt ...
- 语义网 (Semantic Web)和 web 3.0
语义网=有意义的网络. "如果说 HTML 和 WEB 将整个在线文档变成了一本巨大的书,那么 RDF, schema, 和 inference languages 将会使世界上所有的数据变 ...
随机推荐
- heimaJava17
java IO流 缓冲流 概念 缓存流也称为高效流.或者高级流.之前学习的字节流也可以称为原始流 作用:缓冲流自带缓冲区.可以提高原始字节流.字符流读写数据的性能 分类 字节缓冲流 字节缓冲输入流:B ...
- 使用阿里云镜像安装tensorflow
pip --default-timeout=1000 install --index-url https://mirrors.aliyun.com/pypi/simple tensorflow pip ...
- ubuntu系统使用 sudo: cd:找不到命令
1. https://blog.csdn.net/sazass/article/details/125694492 https://blog.csdn.net/weixin_34033624/arti ...
- IP与bigint互转
IP转为bigint create function [dbo].[iptobigint](@ipinfo varchar(16)) returns bigint as begin declare @ ...
- TProtocolException: Required field 'type' is unset! Struct:TPrimitiveTypeEntry(type:null)
org.apache.thrift.protocol.TProtocolException: Required field 'type' is unset! Struct:TPrimitiveType ...
- meterpreter的使用
meterpreter是metasploit中的一个杀手锏,通常在漏洞利用成功后,会返回给攻击者一个攻击通道,其中有很多自动化操作 场景布置 生成木马 首先,我们使用metasploit中的另一个后门 ...
- GO语言学习笔记-反射篇 Study for Go ! Chapter nine - Reflect
持续更新 Go 语言学习进度中 ...... GO语言学习笔记-类型篇 Study for Go! Chapter one - Type - slowlydance2me - 博客园 (cnblogs ...
- JAVA重试机制多种方式深入浅出
重试机制在分布式系统中,或者调用外部接口中,都是十分重要的. 重试机制可以保护系统减少因网络波动.依赖服务短暂性不可用带来的影响,让系统能更稳定的运行的一种保护机制. 为了方便说明,先假设我们想要进行 ...
- 利用Intent在两个页面之间进行传值操作的具体实现
不知道为什么,我本来使用的呼声最高的Bundle发送,但是我使用它会显示不出来,由于时间问题,我今天就先不找了,先放一下,先以完成任务为己任哈! 我们都清楚,我们基本上都是用的Intent实现的页面之 ...
- Android笔记--发送彩信
发送彩信 界面还是那个界面,图片也实现了从相册进行选择图片,选择完成之后,就会回到界面里面的功能: 下面接着实现发送彩信的完整版: 具体实现如下: 界面代码不再展示,主要着重于后台的代码编写啦! 1. ...