pytorch学习笔记(8)--搭建简单的神经网络以及Sequential的使用
1、神经网络图

输入图像是3通道的32×32的,先后经过卷积层(5×5的卷积核)、最大池化层(2×2的池化核)、卷积层(5×5的卷积核)、最大池化层(2×2的池化核)、卷积层(5×5的卷积核)、最大池化层(2×2的池化核)、拉直、全连接层的处理,最后输出的大小为10。
注:(1)通道变化时通过调整卷积核的个数(即输出通道)来实现的,再nn.conv2d的参数中有out_channel这个参数就是对应输出通道
(2)32个3*5*5的卷积核,然后input对其一个个卷积得到32个32*32------通道数变不变看用几个卷积核
(3)最大池化不改变通道channel数
代码输入:
# file : nn_sequential.py
# time : 2022/8/2 上午9:11
# function : 实现一个简单的神经网络
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
# stride 默认为1 所以不写也可
self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
self.maxpool1 = MaxPool2d(kernel_size=2)
self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
self.maxpool2 = MaxPool2d(kernel_size=2)
self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
self.maxpool3 = MaxPool2d(kernel_size=2)
self.flatten = Flatten()
self.linear1 = Linear(in_features=1024, out_features=64)
self.linear2 = Linear(in_features=64, out_features=10) def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x tudui = Tudui()
# 输出网络的结构情况
print(tudui)
# bitch_size = 64 ,channel通道=3,尺寸32*32
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape) # 输出output尺寸
输出:
Tudui(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])
补充说明:

其中Hout=32,Hin(输入的高)=32,dilation[0]=1(默认设置为1),kernel_size[0]=5,将其带入到Hout的公式,
计算过程如下:
32 =((32+2×padding[0]-1×(5-1)-1)/stride[0])+1,简化之后的式子为:
27+2×padding[0]=31×stride[0],其中stride[0]=1,所以padding[0]=2(注若stride[0]=2则padding[0]很大舍去)
2、Sequential
Sequential是一个时序容器。Modules 会以他们传入的顺序被添加到容器中。包含在PyTorch官网中torch.nn模块中的Containers中,在神经网络搭建的过程中如果使用Sequential,代码更简洁
现以Sequential搭建上述一模一样的神经网络,并借助tensorboard显示计算图的具体信息。代码如下:
# file : nn_sequential.py
# time : 2022/8/2 上午9:11
# function : Sequential
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 64)
) def forward(self, x):
x = self.model1(x)
return x tudui = Tudui()
print(tudui) input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape) writer = SummaryWriter("../logs")
writer.add_graph(tudui, input)
writer.close()
输出:
Tudui(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=64, bias=True)
)
)
torch.Size([64, 64])

双击打开查看具体节点信息:

pytorch学习笔记(8)--搭建简单的神经网络以及Sequential的使用的更多相关文章
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- Hadoop学习笔记(10) ——搭建源码学习环境
Hadoop学习笔记(10) ——搭建源码学习环境 上一章中,我们对整个hadoop的目录及源码目录有了一个初步的了解,接下来计划深入学习一下这头神象作品了.但是看代码用什么,难不成gedit?,单步 ...
- 用pytorch1.0搭建简单的神经网络:进行多分类分析
用pytorch1.0搭建简单的神经网络:进行多分类分析 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib ...
- 用pytorch1.0搭建简单的神经网络:进行回归分析
搭建简单的神经网络:进行回归分析 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as p ...
- Spring MVC 学习笔记10 —— 实现简单的用户管理(4.3)用户登录显示全局异常信息
</pre>Spring MVC 学习笔记10 -- 实现简单的用户管理(4.3)用户登录--显示全局异常信息<p></p><p></p>& ...
- Spring MVC 学习笔记9 —— 实现简单的用户管理(4)用户登录显示局部异常信息
Spring MVC 学习笔记9 -- 实现简单的用户管理(4.2)用户登录--显示局部异常信息 第二部分:显示局部异常信息,而不是500错误页 1. 写一个方法,把UserException传进来. ...
- Spring MVC 学习笔记8 —— 实现简单的用户管理(4)用户登录
Spring MVC 学习笔记8 -- 实现简单的用户管理(4)用户登录 增删改查,login 1. login.jsp,写在外面,及跟WEB-INF同一级目录,如:ls Webcontent; &g ...
- Hadoop学习笔记(4) ——搭建开发环境及编写Hello World
Hadoop学习笔记(4) ——搭建开发环境及编写Hello World 整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用JAVA.在linux下开发JAVA还数eclip ...
- UFLDL深度学习笔记 (六)卷积神经网络
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...
- 用pytorch1.0快速搭建简单的神经网络
用pytorch1.0搭建简单的神经网络 import torch import torch.nn.functional as F # 包含激励函数 # 建立神经网络 # 先定义所有的层属性(__in ...
随机推荐
- word和excel转pdf
1.下载jacob.jar包 网址:https://sourceforge.net/projects/jacob-project/files/jacob-project/ 2.导入到本地仓库:mvn ...
- apollo源码同时兼容mysql、postgresql、oracle解决思路
本文摘录 apollo源码采用的是jpa规范 Hibernate 进行持久化的ORM框架 解决思路: 思路一:使用jpa配置文件persistence.xml文件,根据使用的数据库动态加载实体类与数据 ...
- 微服务减少jar包体积
<build> <finalName>${project.artifactId}</finalName> <plugins> <!--打包jar- ...
- C语言的qsort函数
C函数----qsort 函数 qsort()看起来和C++的sort()差不多,但是其实差别很大, qsort的cmp函数,传入的是指针,返回值是int sort的则传入值,返回值是bool 当qs ...
- [洛谷/题目] P1562 还是N皇后
声明 关于科学道理都会放进代码中,但是我们需要先了解一下位运算解这道题目的基础知识 我不是很会专业词语,所以仅介绍原理 位运算基础 众所周知,二进制是0和1 2^3 2^2 2^1 2^0 8 4 2 ...
- SpringMVC学习day03
第1个springmvc程序 这是根据狂神说视频和资料学习的,用于加强自己的记忆 入门学习 1. 步骤: 1.新建一个Moudle , springmvc-02-hello , 添加web的支持! 2 ...
- C - Perform the Combo
C - Perform the Combo 思路:当读到这个题的时候,第一反应就是枚举,但是,无线超时,没办法,那就变,利用前缀和,减少时间. 代码: #include<iostream> ...
- 监控可视化nagios xi
官网下载 https://www.nagios.com/downloads/nagios-xi/linux/ 也可以手动下载解压并安装 cd /tmp wget https://assets.nagi ...
- 学习-Vue2-Vue实例-数据与方法-Object.freeze()
Object.freeze(),会阻止修改现有的property,意味着响应系统无法再追踪变化 代码示例: <!DOCTYPE html> <html lang="en&q ...
- csp-s2020 T2 动物园
题目简述: 共有n个动物,m条要求,每条要求描述了第x位上是1的话,必须购买y饲料,动物园里已有的动物必须的饲料已经购买了,问题是:在不要求增加购买饲料的基础上,还能放进去多少种动物?共有k个二进制, ...