CF492E题解
屑题。
考虑对于每一个 \((x,y)\),将其与 \(((x+dx) \mod n,(y+dy) \mod n)\) 连边。
答案就是连通块中权值最大的那个。
考虑对于 \((x_1,y_1)\) 和 \((x_2,y_2)\) 两个点在同一个连通块中的条件。
条件就是同余方程 $x_1+x * dx \equiv x_2 \bmod n $ 和 $ y_1+y * dy \equiv y_2 \bmod n$ 的解是同一个。
考虑化简:
\]
\]
也就是:
\]
\]
因为值域只有 \(O(n)\),开个桶统计一下数量就好了。
因为 \(\gcd(n,dx)=\gcd(n,dy)=1\),所以 \(dx\) 和 \(dy\) 的逆元可以使用 exgcd 计算。
#include<cstdio>
typedef unsigned uint;
const uint M=1e6;
uint n,m,id,dx,dy,x[M],y[M],sum[M];
void exgcd(const uint&a,const uint&b,uint&x,uint&y){
if(!b)return void((x=1,y=0));exgcd(b,a%b,y,x);y-=a/b*x;
}
inline uint Del(const uint&a,const uint&b){
return b>a?a-b+n:a-b;
}
signed main(){
register uint i,T,X,Y;
scanf("%u%u%u%u",&n,&m,&dx,&dy);
exgcd(dx,n,X,Y);dx=(X+n)%n;
exgcd(dy,n,X,Y);dy=(X+n)%n;
for(i=1;i<=m;++i){
scanf("%u%u",&X,&Y);
T=Del(1ull*X*dx%n,1ull*Y*dy%n);
if(!sum[T])x[T]=X,y[T]=Y;
if(++sum[T]>sum[id])id=T;
}
printf("%u %u",x[id],y[id]);
}
CF492E题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Html 项目使用自定义字体文件问题
感谢大佬:https://zhidao.baidu.com/question/652711582735059245.html 1.首先在项目过程中新建文件夹fonts将准备好的ttf字体文件复制该文件 ...
- 计算当前日期n天后的日期
//计算180天后的日期//180*24*60*60*1000//更具时间戳计算n天前的日期 $(function () { var timestamp =Date.parse(new Date()) ...
- iOS App程序内多语言国际化实现 By HL
iOS 多语言设置有很多方式可以实现,之前在做手机思埠1.0时,就对app进行了多语言设置,当时看到很多方法,比如用plist等方式保存键值对的,不过还是用Localisator来国际化最方便 1.添 ...
- 更新docker镜像
方式一:通过export和import的方式 //导出容器快照到本地文件 $ docker export 1e560fca3906 > ubuntu.tar //将快照文件导入为新的镜像 $ c ...
- 实现基于MYSQL验证的vsftpd虚拟用户访问
一.配置mysql服务器 1.1 安装mysql # yum -y install mariadb-server # systemctl enable --now mariadb.service &a ...
- opencv笔记-SimpleBlobDetector
通用的 Blob 检测方法包括:Laplacian of Gaussian(LoG), Difference of Gaussian(DoG), Derterminant of Hessian(DoH ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- v78.01 鸿蒙内核源码分析(消息映射篇) | 剖析LiteIpc(下)进程通讯机制 | 百篇博客分析OpenHarmony源码
百篇博客分析|本篇为:(消息映射篇) | 剖析LiteIpc(下)进程通讯机制 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析( ...
- C#动态规划法计算文本相似度
C# 采用动态规划算法,计算两个字符串之间的相似程度. public static double CountTextSimilarity(string textX, string textY, boo ...
- Dubbo源码剖析六之SPI扩展点的实现之getExtension
上文Dubbo源码剖析六之SPI扩展点的实现之getExtensionLoader - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中分析了getExtensionLoader,本文继续分 ...