建议改为:如何使用FWT直接把反演题草过去

需要清楚 FWT 的本质是什么。

首先我们有一个明显的 DP:

设 \(dp[u][x][S]\) 代表 \(u\) 在图中为 \(x\),子树包含集合 \(S\) 的方案数。

那么我们只需要枚举可行的 \((v,y)\),然后做子集卷积就行。

复杂度 \(O(n^4 \times 2^n)\),无法通过。

考虑硬生生把子集卷积的 \(n^2 \times 2^n\) 优化成 \(n \times 2^n\)。

现在我们将 \(dp[u][x]\) 看做一个整体,那么建出需要做子集卷积的转移树,若干个 \((u,x)\) 与 \((v,y)\) 连接。

子集卷积是什么?将这些数丢到 \(n \times 2^n\) 的数组中去,然后跑 FWT,然后中间再对第一维度做一个卷积,最后 IFWT。

我们直接维护 FWT 的“点值”,只需要考虑如何解决掉多项式乘法。

因为只需要对 \((1,x)\) 这 \(n\) 个数组进行 IFWT,所以这一部分复杂度即使暴力也是 \(O(n^3 \times 2^n)\) 的。

多项式乘法硬拆太难,考虑题意。

很明显只有第 \(siz[u]\) 个数组是有值的,因为别的很明显不合法。于是可以 \(O(2^n)\) 搞定这个过程。

然后对于某些集合不包含点的,完全可以还原数组后手动去掉。每个数组都还原一遍,复杂度为 \(O(n^2 \times n \times 2^n)\),完全可以通过此题。

实际上因为题目特性,直接做子集卷积都是对的(

LGP3349口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. laravel中observe不能监听到updated事件原因

    //这种方式不行Student::where('id', $request->student_id)->update($student); $findStudent = Student:: ...

  2. smartimageview 的原理

    自定义的控件在布局文件中的引用都需要指定类的完整路径 1.自定义了一个MyImageview类继承了Imageview,添加三个构造方法     2.添加一个setImageUrl方法接受一个图片ur ...

  3. Linux常用命令,面试常考

    Linux常用命令 网络工具 查看监听端口的进程: lsof -i :8080 或者 netstat -tupln|grep 8080 复制 软连接创建 ln -s 源文件 目标文件

  4. Nodejs ORM框架Sequelize快速入门

    Nodejs ORM框架Sequelize快速入门 什么是ORM? 简单的讲就是对SQL查询语句的封装,让我们可以用OOP的方式操作数据库,优雅的生成安全.可维护的SQL代码.直观上,是一种Model ...

  5. DockerClient端与DockerDaemon的通信安全

    DockerClient端与DockerDaemon的通信安全 容器的安全性问题的根源在于容器和宿主机共享内核.如果容器里的应用导致Linux内核崩溃,那么整个系统可能都会崩溃.与虚拟机是不同的,虚拟 ...

  6. python使用泛型

    所谓的泛型, 就是将数据类型作为参数进行传递, 即在我们用的时候确定数据类型, 这是一种在面向对象语言中经常使用的特性 一般类使用 以SQLAlchemy举例 比如: 我们统一写个将数据保存到数据库的 ...

  7. Java全栈学习路线、学习资源和面试题一条龙

    肝了一个月,终于把Java学习路线.面试题资源和电子书资源都整理好了. Java 从基础到微服务的学习路线,其中还包括科班知识.学习建议.后续的学习引导和相应的学习资源(视频.书籍.网站),还整理了J ...

  8. Vue 源码解读(7)—— Hook Event

    前言 Hook Event(钩子事件)相信很多 Vue 开发者都没有使用过,甚至没听过,毕竟 Vue 官方文档中也没有提及. Vue 提供了一些生命周期钩子函数,供开发者在特定的逻辑点添加额外的处理逻 ...

  9. C# Debug和Trace:输出调试信息

    在 C# 语言中允许在程序运行时输出程序的调试信息,类似于使用 Console.WriteLine 的方式向控制台输出信息.所谓调试信息是程序员在程序运行时需要获取的程序运行的过程,以便程序员更好地解 ...

  10. linux-noshell的模式

    转至:https://blog.csdn.net/ifubing/article/details/95509981 noshell 创建两个用户,一个直接创建,一切按默认的来 另一个创建时指定一下no ...