import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val vertexArray = Array(
(1L, ("Alice", 28)),
(2L, ("Bob", 27)),
(3L, ("Charlie", 65)),
(4L, ("David", 42)),
(5L, ("Ed", 55)),
(6L, ("Fran", 50)),
(7L, ("Tian", 55))
)
//边的数据类型ED:Int
val edgeArray = Array(
Edge(2L, 1L, 7),
Edge(2L, 4L, 2),
Edge(3L, 2L, 4),
Edge(3L, 6L, 3),
Edge(4L, 1L, 1),
Edge(5L, 2L, 2),
Edge(5L, 3L, 8),
Edge(5L, 6L, 3),
Edge(7L, 3L, 8),
Edge(7L, 6L, 3),
Edge(7L, 6L, 6)
)
val vertexRDD: RDD[(Long, (String, Int))] = sc.parallelize(vertexArray)
val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)
val graph: Graph[(String, Int), Int] = Graph(vertexRDD, edgeRDD)

scala> import scala.collection.immutable.HashSet
import scala.collection.immutable.HashSet

获取顶点3的首度邻居

scala> val firstNeighbor=graph.aggregateMessages[Int](triplet=>{if(triplet.srcId==3) triplet.sendToDst(1)},(a,b)=>a )
firstNeighbor: org.apache.spark.graphx.VertexRDD[Int] = VertexRDDImpl[21] at RDD at VertexRDD.scala:57

scala> var fistids=new HashSet[Long]()
fistids: scala.collection.immutable.HashSet[Long] = Set()

scala> firstNeighbor.collect.foreach(a=>fistids+=a._1)

顶点3的首度邻居列表如下
scala> fistids
res1: scala.collection.immutable.HashSet[Long] = Set(6, 2)

边信息如下:

Edge(3L, 2L, 4),
Edge(3L, 6L, 3),

可以确定首度邻居为2,6

对顶点3的首度邻居进行循环获取二度邻居的顶点ID列表

scala> var secondids=new HashSet[Long]()
secondids: scala.collection.immutable.HashSet[Long] = Set()

scala> fistids.foreach(a=>{val secondneibors=graph.aggregateMessages[Int](trp=>{if(trp.srcId==a) trp.sendToDst(1)},(a,b)=>a);secondneibors.collect.foreach(a=>{secondids+=a._1})})

scala> secondids
res7: scala.collection.immutable.HashSet[Long] = Set(1, 4)

根据边可以看出,6没有出度

2的出度为1和4

获取二度邻居的信息

scala> graph.vertices.filter(a=>secondids.contains(a._1)).collect
res8: Array[(org.apache.spark.graphx.VertexId, (String, Int))] = Array((1,(Alice,28)), (4,(David,42)))

获取一度二度关系

scala> graph.vertices.filter(a=>secondids.contains(a._1) || fistids.contains(a._1)).collect
res10: Array[(org.apache.spark.graphx.VertexId, (String, Int))] = Array((1,(Alice,28)), (2,(Bob,27)), (4,(David,42)), (6,(Fran,50)))

----------------------------------------

顶点2的入度出度邻居

scala> graph.collectNeighbors(EdgeDirection.Either).filter(_._1==2).map(_._2).collect
res15: Array[Array[(org.apache.spark.graphx.VertexId, (String, Int))]] = Array(Array((1,(Alice,28)), (4,(David,42)), (3,(Charlie,65)), (5,(Ed,55))))

顶点2的入度邻居

scala> graph.collectNeighbors(EdgeDirection.In).filter(_._1==2).map(_._2).collect
res16: Array[Array[(org.apache.spark.graphx.VertexId, (String, Int))]] = Array(Array((3,(Charlie,65)), (5,(Ed,55))))

顶点2的出度邻居

scala> graph.collectNeighbors(EdgeDirection.Out).filter(_._1==2).map(_._2).collect
res17: Array[Array[(org.apache.spark.graphx.VertexId, (String, Int))]] = Array(Array((1,(Alice,28)), (4,(David,42))))

------------------------------------------------------

其他方式 获取二度出度邻居

scala> val firstNids=graph.collectNeighborIds(EdgeDirection.Out).filter(_._1==3).map(a=>a._2).first
firstNids: Array[org.apache.spark.graphx.VertexId] = Array(2, 6)

scala> graph.collectNeighbors(EdgeDirection.Out).filter(a=>firstNids.contains(a._1)).map(_._2).filter(_.length>0).first
res116: Array[(org.apache.spark.graphx.VertexId, (String, Int))] = Array((1,(Alice,28)), (4,(David,42)))

--------------------------------------------------

获取双向二度邻居

获取顶点3的邻居ID列表

scala> val firstNids=graph.collectNeighborIds(EdgeDirection.Either).filter(_._1==3).map(a=>a._2).first
firstNids: Array[org.apache.spark.graphx.VertexId] = Array(2, 6, 5, 7)

获取首度邻居顶点的邻居,生成一个多维数组,使用reduce 合并多维数组为一维数组并去重,然后将顶点3以及顶点3的邻居过滤掉获取二度邻居

scala> graph.collectNeighbors(EdgeDirection.Either).filter(a=>firstNids.contains(a._1)).map(_._2).reduce((a,b)=>a++b).distinct.filter(a=>{!firstNids.contains(a._1) && a._1!=3 })
res155: Array[(org.apache.spark.graphx.VertexId, (String, Int))] = Array((1,(Alice,28)), (4,(David,42)))

Graphx二度关系的更多相关文章

  1. 基于Spark GraphX计算二度关系

    关系计算问题描述 二度关系是指用户与用户通过关注者为桥梁发现到的关注者之间的关系.目前微博通过二度关系实现了潜在用户的推荐.用户的一度关系包含了关注.好友两种类型,二度关系则得到关注的关注.关注的好友 ...

  2. Spark 计算人员二度关系

    1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...

  3. Hadoop MapReduce实现人员二度关系运算

    1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...

  4. 海量数据的二度人脉挖掘算法(Hadoop 实现)

    最近做了一个项目,要求找出二度人脉的一些关系,就好似新浪微博的“你可能感兴趣的人” 中,间接关注推荐:简单描述:即你关注的人中有N个人同时都关注了 XXX . 在程序的实现上,其实我们要找的是:若 U ...

  5. Spark 计算人员三度关系

    1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...

  6. MapReduce实现二度好友关系

    一.问题定义 我在网上找了些,关于二度人脉算法的实现,大部分无非是通过广度搜索算法来查找,犹豫深度已经明确了2以内:这个算法其实很简单,第一步找到你关注的人:第二步找到这些人关注的人,最后找出第二步结 ...

  7. GraphX实现N度关系

    背景 本文给出了一个简单的计算图中每一个点的N度关系点集合的算法,也就是N跳关系. 之前通过官方文档学习和理解了一下GraphX的计算接口. N度关系 目标: 在N轮里.找到某一个点的N度关系的点集合 ...

  8. SparkGraphx计算指定节点的N度关系节点

    直接上代码: package horizon.graphx.util import java.security.InvalidParameterException import horizon.gra ...

  9. 使用MapReduce实现二度人脉搜索算法

    一,背景介绍 在新浪微博.人人网等社交网站上,为了使用户在网络上认识更多的朋友,社交网站往往提供类似“你可能感兴趣的人”.“间接关注推荐”等好友推荐的功能,其中就包含了二度人脉算法. 二,算法实现 原 ...

  10. 依据二度人脉推荐好友sql

    friend表结构 DROP TABLE IF EXISTS FRIEND; create table friend(     uid        bigint not null comment ' ...

随机推荐

  1. C++实现单链表相关操作

    #include<iostream>#include<cstdlib>//C++动态分配存储空间using namespace std;#define OK 1#define ...

  2. antd timePicker组件限制当前之前的时间不可选择

    import React from 'react'; import ReactDOM from 'react-dom'; import {Input,DatePicker,Form,Col,Butto ...

  3. window server 2012R2部署asp.net core项目应用程序池自动停止

    当在windows  server 2012R2上部署asp.net core项目时,需要安装the Hosting Bundle,但当我们安装完dotnet-hosting后,浏览站点应用程序池会自 ...

  4. PAT-basic-1021 个位数统计 java

    一.题目 给定一个 k 位整数 N=dk−1​10k−1+⋯+d1​101+d0​ (0≤di​≤9, i=0,⋯,k−1, dk−1​>0),请编写程序统计每种不同的个位数字出现的次数.例如: ...

  5. 044_Schedule Job 间隔时间自动执行

    需求:系统上的标准功能是能够设置间隔一天的执行,或者是写完代码着急测试我们写个5分钟后执行的: 但是遇到要求没间隔一小时或者十分钟执行,该怎么处理呢? global class **_Retrieve ...

  6. IDEA打包普通java项目并用java命令运行

    IDEA下打包为jar包,普通java项目(非web项目) 效果是将第三方jar包放到一个文件夹中(如lib),这样看起来清晰一些.如下图这种: 1.项目结构. 1.关键:modules 在<o ...

  7. vue3 微信支付和支付宝支付 H5和微信内置浏览器

    vue3微信支付和支付宝支付 // 判断是否为微信内置浏览器 let browser: any = navigator.userAgent.toLowerCase(); let isWechat: a ...

  8. Linux 使用Apache服务部署静态网站

    网站服务程序 我们平时访问的网站服务就是Web网络服务,一般是指允许用户通过浏览器访问到互联网中各种资源的服务.如图所示,Web网络服务是一种被动访问的服务程序,即只有接收到互联网中其他主机发出的请求 ...

  9. Vue双向绑定原理 从vue2的Object.defineProperty到vue3的proxy

    在网上查找资料的时候,看到很多关于Vue双向绑定的文章都直接说是通过Object.defineProperty实现的,但我隐约记得去年看过尤大的视频,记得好像是用proxy实现的,所以又好好找了一下, ...

  10. OPENSSL 生成RSA公钥、私钥和证书

    在命令窗口执行下列操作. 1)生成RSA私钥: openssl genrsa -out rsa_private_key.pem 2048 生成内容: -----BEGIN RSA PRIVATE KE ...