科学计算库Numpy基础&提升(理解+重要函数讲解)
Intro
对于同样的数值计算任务,使用numpy比直接编写python代码实现 优点:
- 代码更简洁: numpy直接以数组、矩阵为粒度计算并且支持大量的数学函数,而python需要用for循环从底层实现;
- 性能更高效: numpy的数组存储效率和输入输出计算性能,比python使用list好很多,用numpy进行计算要比原生Python快得多,而且数据量越大,效果越明显;numpy的大部分代码都是c语言实现的,这是numpy比python高效的原因
numpy核心:ndarray对象
ndarray对象
- numpy的核心数据结构,叫做array就是数组,array对象可以是一维数组,也可以是多维数组
- python的list也可以实现相同的功能,但是array的优势在于性能好,包含数组元数据信息、大量的便捷函数
- 成为 Scipy、Pandas、scilit-learn、tensorflow、paddlepaddle等框架的通用底层语言
- numpy的array和python的list的一个区别是它的元素必须都是同一种数据类型,这也是numpy高性能的一个原因
ndarray属性
个人以前会弄混shape和size,注意shape打印的是数组的形状是一个元组,size则是表示数组大小即总共有多少个元素
- shape 返回一个元组 表示array的形状
- ndim 返回一个数字 表示array的维度的数目
- size 返回一个数字 表示array中所有数据元素的数目
- dtype array中元素的数据类型,
a.astype(str)可以把a数组元素转为str类型 - itemsize 表示数组中每个元素的字节大小
创建array的方法
- 从Python的列表list和嵌套列表创建array,
np.array([...]) - 使用函数arange、linspace等创建等差数组,
np.arange(start,stop,step,dtype)左闭右开,np.linspace(start,stop,num,endpoint)默认左右取闭,num是要删除的等间隔样例数量(默认50),endpoint 序列中是否包含stop值, 默认为true - 使用ones、ones_like、zeros、zeros_like、empty、empty_like、full、full_like、eye等函数创建,注意使用empty创建的数据是未初始化的,里面的值可能是随机值不要用,full则是将一个给定大小的数组填满固定值,用法如
np.full((2, 4), 666) - 生成随机数的np.random模块创建,
np.random.seed(2022)设置随机种子,使得每次随机的结果固定,np.random.rand(2,5)随机生成 2行5列的2维数组,返回数据在[0,1)之间;np.random.randint(2,5,5)在[2,5) 范围内生成5个随机整数;np.random.uniform(2,5,10)在 [2,5) 之间 生成均匀分布的10个数字;np.random.uniform(2,5,(2,5))在 [2,5) 之间 生成均匀分布的(2,5)个数字;np.random.randn((2,5))则返回有标准正态分布的数据,均值1方差0;np.random.normal(1,10,(2,5))则可指定均值和标准差;另外,choice从给定的数组里 生成随机结果,shuffle把一个数组进行随机排列(如果数组是多维的 则只会在第一维度打散数据),permutation把一个数组进行随机排列 ,或者数字的全排列,两者功能相同但permutation不会更改原来的arr 会返回一个新的copy
numpy的数组索引
三种索引方法:
- 基础索引,切片法,不详细叙述
- 神奇索引,就是用整数数组进行的索引,比如对于x = np.arange(10),可以用
x[np.array([[0,2],[1,3]])]来取x对应位置的值;对于二维数组,Y[:,[0, 2]]筛选第0和第2列,Y[[0,2,3],[1,2,3]]同时指定行列 - 布尔索引,对于x = np.arange(10),可以用x>5返回bool值的数组,
x[x>5] = 1通过条件进行赋值,把x中大于5的值全部赋为1,x[x<5] += 20,小于5的值全部加20,还可以进行条件组合,比如x[(x%2==0)| (x>7)]和x[(x%2==0)& (x>7)];注意对于二维数组Y = np.arange(20).reshape(4, 5) 来说,既有行又有列 因此返回的是 行列一维数组Y[Y>5]返回的是行列一维数组,可以用Y[:, 3][Y[:, 3]>5]把第3列大于5的行数据筛选出来
numpy数据操作
数组数学操作
A*B是对应位置元素相乘,对于arr = np.arange(12).reshape(3,4),可以用各种数学统计函数,包括sum,prod(元素乘积),cumsum(np.cumsum(arr)从头到尾累加,每加一次输出一个元素),cumprod(累积),min,max,median,mean,np.percentile(arr,[25,50,75])和np.quantile(arr,[0.25,0.5,0.75])求取数列第?分位的数值(后者范围为0-1),std(标准差)
,var(方差),np.average(arr, weights=np.random.rand(*arr.shape)) 加权平均,argmax 寻找最大值的下标
- 对于numpy的聚合类函数的axis参数解释:axis=0代表行 axis=1 代表列,axis=0 代表把行消解掉,axis=1 代表把列消解掉;axis=0 代表跨行计算, axis=1 代表跨列计算
数组合并操作
对于a = np.arange(9).reshape(3,3)以及b = np.arange(9,18).reshape(3,3),合并行(行变多)使用np.concatenate([a,b])或np.vstack([a,b])或np.row_stack([a,b]) ,合并列(列变多)使用np.concatenate([a,b],axis=1)或np.hstack([a,b])或np.column_stack([a,b])。
参考
[1-5 Numpy教程 — 梗直哥随笔 v0.1 文档 (gengzhige-essay.readthedocs.io)](https://gengzhige-essay.readthedocs.io/docs/01 环境配置/1-5 Numpy教程.html)
科学计算库Numpy - mathor (wmathor.com)
科学计算库Numpy基础&提升(理解+重要函数讲解)的更多相关文章
- Python科学计算库Numpy
Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简 ...
- numpy科学计算库的基础用法,完美抽象多维数组(原创)
#起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print(' ...
- python科学计算库numpy和绘图库PIL的结合,素描图片(原创)
# 导入绘图库 from PIL import Image #导入科学计算库 import numpy as np #封装一个图像处理工具类 class TestNumpy(object): def ...
- Python 科学计算库numpy
Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数 # 多维数组ndarray import numpy as np ar ...
- [Python学习] python 科学计算库NumPy—矩阵运算
NumPy库的核心是矩阵及其运算. 使用array()函数可以将python的array_like数据转变成数组形式,使用matrix()函数转变成矩阵形式. 基于习惯,在实际使用中较常用array而 ...
- Python科学计算库-Numpy
NumPy 是 Python 语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,也是学习 python 必学的一个库. 1. 读取文件 numpy.gen ...
- [Python学习] python 科学计算库NumPy—tile函数
在学习knn分类算法的过程中用到了tile函数,有诸多的不理解,记录下来此函数的用法. 函数原型:numpy.tile(A,reps) #简单理解是此函数将A进行重复输出 其中A和reps都是ar ...
- 科学计算库Numpy(1)
Numpy 一,数据结构 数据类型: ndarray import numpy world_alchol = numpy.genfromtxt('world_alchol.txt',delimiter ...
- 科学计算库Numpy——概述
Numpy主要用于数组的各种计算. 导入Numpy import numpy as np 数组类型 Numpy的数组类型为numpy.ndarray. array=np.array([1,2,3,4, ...
随机推荐
- 实现Linux系统的回收站
Linux系统默认没有回收站功能,使用rm命令进行删除操作,文件就会直接从系统中删除,很难恢复. 今天我们利用简单的shell脚本实现Linux系统下的回收站机制. 先提供脚本代码 [root@qll ...
- [源码解析] TensorFlow 分布式之 ParameterServerStrategy V2
[源码解析] TensorFlow 分布式之 ParameterServerStrategy V2 目录 [源码解析] TensorFlow 分布式之 ParameterServerStrategy ...
- # k8s-jenkins在kubernetes中持续部署
k8s-jenkins在kubernetes中持续部署 1. k8s-jenkins在kubernetes中持续部署 Kubernetes Continuous Deploy插件:用于将资源配置部署到 ...
- [论文][表情识别]Towards Semi-Supervised Deep Facial Expression Recognition with An Adaptive Confidence Margin
论文基本情况 发表时间及刊物/会议:2022 CVPR 发表单位:西安电子科技大学, 香港中文大学,重庆邮电大学 问题背景 在大部分半监督学习方法中,一般而言,只有部分置信度高于提前设置的阈值的无标签 ...
- 原理:C++为什么一般把模板实现放入头文件
写在前面 本文通过实例分析与讲解,解释了为什么C++一般将模板实现放在头文件中.这主要与C/C++的编译机制以及C++模板的实现原理相关,详情见正文.同时,本文给出了不将模板实现放在头文件中的解决方案 ...
- Docker容器(centos)安装zabbix
zabbix是一个基于WEB界面提供分布式系统监视以及网络监视功能的企业级的开源解决方案.--百度百科 zabbix介绍 zabbix主要有zabbix-server及zabbix-agent组成,z ...
- Linux系列之linux访问windows文件
Linux永久挂载windows共享文件 Linux系统必须安装samba-client Linux服务器必须能访问到Windows的共享文件服务的(445端口) 1.Windows共享文件 2.测试 ...
- 超级重磅!Apache Hudi多模索引对查询优化高达30倍
与许多其他事务数据系统一样,索引一直是 Apache Hudi 不可或缺的一部分,并且与普通表格式抽象不同. 在这篇博客中,我们讨论了我们如何重新构想索引并在 Apache Hudi 0.11.0 版 ...
- react-router v6对比react-router v5
简述: 1. react-router v6 原生支持typeScript ; 安装方法 npm install react-router-dom@6 2. react-router v ...
- 浅析Kubernetes架构之workqueue
通用队列 在kubernetes中,使用go的channel无法满足kubernetes的应用场景,如延迟.限速等:在kubernetes中存在三种队列通用队列 common queue ,延迟队列 ...