Django中的QuerySet查询优化之select_related
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能。本文通过一个简单的例子详解这两个函数的作用。虽然QuerySet的文档中已经详细说明了,但本文试图从QuerySet触发的SQL语句来分析工作方式,从而进一步了解Django具体的运作方式。
实例背景
假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

models.py 内容:
from django.db import models
class Province(models.Model):
name = models.CharField(max_length=10)
def __unicode__(self):
return self.name
class City(models.Model):
name = models.CharField(max_length=5)
province = models.ForeignKey(Province)
def __unicode__(self):
return self.name
class Person(models.Model):
firstname = models.CharField(max_length=10)
lastname = models.CharField(max_length=10)
visitation = models.ManyToManyField(City, related\_name = "visitor")
hometown = models.ForeignKey(City, related\_name = "birth")
living = models.ForeignKey(City, related\_name = "citizen")
def __unicode__(self):
return self.firstname + self.lastname
PS:
注1:创建的app名为“QSOptimize”
注2:为了简化起见,qsoptimize_province 表中只有2条数据:湖北省和广东省,qsoptimize_city表中只有三条数据:武汉市、十堰市和广州市
select_related()
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化
作用和方法
在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:
>>> citys = City.objects.all()
>>> for c in citys:
... print c.province
...
这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ;
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
注:这里的SQL语句是直接从Django的logger:‘django.db.backends’输出出来的
如果我们使用select_related()函数:
>>> citys = City.objects.select_related().all()
>>> for c in citys:
... print c.province
...
就只有一次SQL查询,显然大大减少了SQL查询的次数:
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ;
这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:
+----+-----------+-------------+----+-----------+
| id | name | province_id | id | name |
+----+-----------+-------------+----+-----------+
| 1 | 武汉市 | 1 | 1 | 湖北省 |
| 2 | 广州市 | 2 | 2 | 广东省 |
| 3 | 十堰市 | 1 | 1 | 湖北省 |
+----+-----------+-------------+----+-----------+
3 rows in set (0.00 sec)
使用方法
select_related()函数支持如下三种方法:
*fields 参数
select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。
例如我们要获得张三的现居省份,可以用如下方式:
>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province
触发的SQL查询如下:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' );
可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| 1 | 张 | 三 | 3 | 1 | 1 | 武汉市 | 1 | 1 | 湖北省 |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
1 row in set (0.00 sec)
然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:
>>> zhangs.hometown.province
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`id` = 3 ;
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1
同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。
值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:
>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province
但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:
>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province
如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。
depth 参数
select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:
>>> zhangs = Person.objects.select_related(depth = d)
d=1 相当于 select_related(‘hometown’,’living’)
d=2 相当于 select_related(‘hometown__province’,’living__province’)
无参数
select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:
zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)
但要注意两点:
- Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
- Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。
总结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
Django中的QuerySet查询优化之select_related的更多相关文章
- Django中的QuerySet查询优化之实例篇
转载的,做个笔记,原文链接 在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子 ...
- Django中的QuerySet查询优化之prefetch_related
转载的,做个笔记,原文链接 在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子 ...
- Django中manger/QuerySet类与mysql数据库的查询
Django中的单表操作 1.精确查询 #查询的结果返回是容器Query Set的函数(Query Set模型类)# 1. all() 查询的所有的符合条件的结果,支持正向索引,支持索引切片,不 ...
- Django中的QuerySet
一.QuerySet 查询集,类似一个列表,包含了满足查询条件的所有项.QuerySet 可以被构造,过滤,切片,做为参数传递,这些行为都不会对数据库进行操作.只有你查询的时候才真正的操作数据库.意味 ...
- Django——Django中的QuerySet API 与ORM(对象关系映射)
首先名词解释. ORM: 对象关系映射(英语:Object Relational Mapping,简称ORM,或O/RM,或O/R mapping),是一种程序技术,用于实现面向对象编程语言里不同类型 ...
- Django中的select_related与prefetch_related
Django是一个基于Python的网站开发框架,一个很重要的特点就是Battery Included,简单来说就是包含了常规开发中所需要的一切东西,包括但不限于完整的ORM模型.中间件.会话处理 ...
- Django中常用字段
一.Django框架的常用字段 Django ORM 常用字段和参数 常用字段 常用字段 AutoField int自增列,必须填入参数 primary_key=True.当model中如果没有自增列 ...
- Django中的ORM
Django中ORM的使用. 一.安装python连接mysql的模块:MySQL-python sudo pip install MySQL-python 安装完成后在python-shell中测试 ...
- Django中的ORM相关操作:F查询,Q查询,事物,ORM执行原生SQL
一 F查询与Q查询: 1 . F查询: 在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较.如果我们要对两个字段的值做比较,那该怎么做呢? Django 提供 F() 来做这样的 ...
随机推荐
- BI实施过程中的工具与服务
成功的BI项目,不仅仅是应用了BI工具软件,还要具备完善的BI服务体系,才能称之为真正成功的商业智能bi项目. 现在的BI(商业智能)比起几年前的ERP一样,成为CIO们关注的焦点.在ERP等基础信息 ...
- CURL in windows
目前版本为: 7.50.3 >> 不同操作系统及版本的下载页面 https://curl.haxx.se/download/?C=M;O=D Windows上的下载入口及地址为: htt ...
- 基于Java Mina框架的部标808服务器设计和开发
在开发部标GPS平台中,部标808GPS服务器是系统的核心关键,决定了部标平台的稳定性和行那个.Linux服务器是首选,为了跨平台,开发语言选择Java自不待言. 我们为客户开发的部标服务器基于Min ...
- Qt之Qprocess
QProcess 可用于完成启动外部程序,并与之交互通信. 一.启动外部程序的两种方式 1)一体式:void QProcess::start(const QString & program,c ...
- win10 启动文件夹
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp
- Introduction to Big Real Mode
转自Merck Hung merck@olux.org, 洪豪謙 应朋友的要求, 希望我花一点时间整理一下 x86 Big Real Mode 的文章.另外也发现, 身边似乎有一些朋友也准备要开始从事 ...
- Intent传递数据的方法
一.传递List 1.传递List<String>的方法 ArrayList<String> info = new ArrayList<String>(); inf ...
- iOS 9的升级后的问题处理
iOS 9变动影响SDK部分: 增加了bitCode编码格式,当SDK不支持bitCode时,用户集成时无法开启bitCode选项. 现象:用户集成SDK后无法编译通过,错误日志里包含了bitCode ...
- LoadRunner培训初级教程
一 LoadRunner简介 1.1 Loadrunner介绍 LoadRunner 是 HP Mercury Interactive 用来测试应用程序性能的工具 LoadRunner 通过模拟一个 ...
- Hi, there!
Wish you a happy day~我们一起玩WEB前端!^ ^