Codeforces Round #385 (Div. 2) A,B,C 暴力,模拟,并查集
2 seconds
256 megabytes
standard input
standard output
Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.
Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on.
Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.
The first line of input will be a single string s (1 ≤ |s| ≤ 50), the word Hongcow initially learns how to spell. The string s consists only of lowercase English letters ('a'–'z').
Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.
abcd
4
bbb
1
yzyz
2
For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda".
For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb".
For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
题意:给你一个字符串,字符串可以将最后一个放第一个,其余全部往后推,问最多有多少个不同的字符串;
思路:暴力枚举起始点,字符串hash;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=1e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
char a[N];
map<string,int>m;
int main()
{
scanf("%s",&a);
int n=strlen(a);
int ans=;
for(int i=;i<n;i++)
{
string aa="";
for(int j=i;j<n;j++)
aa+=a[j];
for(int j=;j<i;j++)
aa+=a[j];
if(!m[aa])
ans++;
m[aa]=;
}
printf("%d\n",ans);
return ;
}
2 seconds
256 megabytes
standard input
standard output
Hongcow likes solving puzzles.
One day, Hongcow finds two identical puzzle pieces, with the instructions "make a rectangle" next to them. The pieces can be described by an n by m grid of characters, where the character 'X' denotes a part of the puzzle and '.' denotes an empty part of the grid. It is guaranteed that the puzzle pieces are one 4-connected piece. See the input format and samples for the exact details on how a jigsaw piece will be specified.
The puzzle pieces are very heavy, so Hongcow cannot rotate or flip the puzzle pieces. However, he is allowed to move them in any directions. The puzzle pieces also cannot overlap.
You are given as input the description of one of the pieces. Determine if it is possible to make a rectangle from two identical copies of the given input. The rectangle should be solid, i.e. there should be no empty holes inside it or on its border. Keep in mind that Hongcow is not allowed to flip or rotate pieces and they cannot overlap, i.e. no two 'X' from different pieces can share the same position.
The first line of input will contain two integers n and m (1 ≤ n, m ≤ 500), the dimensions of the puzzle piece.
The next n lines will describe the jigsaw piece. Each line will have length m and will consist of characters '.' and 'X' only. 'X' corresponds to a part of the puzzle piece, '.' is an empty space.
It is guaranteed there is at least one 'X' character in the input and that the 'X' characters form a 4-connected region.
Output "YES" if it is possible for Hongcow to make a rectangle. Output "NO" otherwise.
2 3
XXX
XXX
YES
2 2
.X
XX
NO
5 5
.....
..X..
.....
.....
.....
YES
For the first sample, one example of a rectangle we can form is as follows
111222
111222
For the second sample, it is impossible to put two of those pieces without rotating or flipping to form a rectangle.
In the third sample, we can shift the first tile by one to the right, and then compose the following rectangle:
.....
..XX.
.....
.....
.....
题意:问你是否只有一个矩形;
思路:找到最上面左边的点和最下面右边为矩阵左右边界,判断是否问矩形,再求矩形外面是否有X;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=1e3+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
char mp[N][N];
int stx,sty;
int enx,eny;
int n,m;
void checks()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(mp[i][j]=='X')
{
stx=i;
sty=j;
return;
}
}
}
}
void checke()
{
for(int i=n;i>=;i--)
{
for(int j=m;j>=;j--)
{
if(mp[i][j]=='X')
{
enx=i;
eny=j;
return;
}
}
}
}
int check(int s,int ss,int e,int ee)
{
int sum=;
for(int i=s;i<=e;i++)
{
for(int j=ss;j<=ee;j++)
{
if(mp[i][j]!='X')
return -;
sum++;
}
}
return sum;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",mp[i]+);
}
checks();
checke();
if(!stx||!enx)
return puts("NO\n");
int no=check(stx,sty,enx,eny),ans=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
if(mp[i][j]=='X')
ans++;
}
if(ans==no)
printf("YES\n");
else
printf("NO\n");
return ;
}
2 seconds
256 megabytes
standard input
standard output
Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.
The world can be modeled as an undirected graph with n nodes and m edges. k of the nodes are home to the governments of the kcountries that make up the world.
There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.
Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.
The first line of input will contain three integers n, m and k (1 ≤ n ≤ 1 000, 0 ≤ m ≤ 100 000, 1 ≤ k ≤ n) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.
The next line of input will contain k integers c1, c2, ..., ck (1 ≤ ci ≤ n). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.
The following m lines of input will contain two integers ui and vi (1 ≤ ui, vi ≤ n). This denotes an undirected edge between nodes ui andvi.
It is guaranteed that the graph described by the input is stable.
Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.
4 1 2
1 3
1 2
2
3 3 1
2
1 2
1 3
2 3
0
For the first sample test, the graph looks like this:
Vertices 1 and 3 are special. The optimal solution is to connect vertex 4 to vertices 1 and 2. This adds a total of 2 edges. We cannot add any more edges, since vertices 1 and 3 cannot have any path between them.
For the second sample test, the graph looks like this:
We cannot add any more edges to this graph. Note that we are not allowed to add self-loops, and the graph must be simple.
题意:给你一个无向图,n个村庄,m条边,k个政府,不能让两个政府联通,问最多能加多少条边;
思路:首先并查集一下,找到一个最大的集合,将无政府的点,加进去,然后将每个集合所有点有相互连接即可;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=1e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
int fa[N],si[N];
int flag[N];
int Find(int x)
{
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
void update(int x,int y)
{
int u=Find(x);
int v=Find(y);
if(u!=v)
{
if(flag[u])
{
fa[v]=u;
si[u]+=si[v];
}
else
{
fa[u]=v;
si[v]+=si[u];
}
}
}
int u[N],v[N];
int main()
{
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=k;i++)
{
int x;
scanf("%d",&x);
flag[x]=;
}
for(int i=;i<=n;i++)
{
fa[i]=i;
si[i]=;
}
for(int i=;i<=m;i++)
{
scanf("%d%d",&u[i],&v[i]);
update(u[i],v[i]);
}
int ma=,pos;
for(int i=;i<=n;i++)
{
if(flag[i])
{
if(si[i]>ma)
{
ma=si[i];
pos=i;
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
int x=Find(i);
if(x==pos||!flag[x])
ans++;
}
//cout<<ans<<endl;
ans=ans*(ans-)/;
for(int i=;i<=n;i++)
{
int x=Find(i);
if(x!=pos&&flag[x])
ans+=si[x]*(si[x]-)/;
flag[x]=;
}
ans-=m;
printf("%d\n",ans);
return ;
}
Codeforces Round #385 (Div. 2) A,B,C 暴力,模拟,并查集的更多相关文章
- Codeforces Round #376 (Div. 2) A B C 水 模拟 并查集
A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...
- Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary 并查集
D. Mahmoud and a Dictionary 题目连接: http://codeforces.com/contest/766/problem/D Description Mahmoud wa ...
- Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集
B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...
- Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列
D. Fools and Foolproof Roads You must have heard all about the Foolland on your Geography lessons. ...
- Codeforces Round #254 (Div. 2) B. DZY Loves Chemistry (并查集)
题目链接 昨天晚上没有做出来,刚看题目的时候还把题意理解错了,当时想着以什么样的顺序倒,想着就饶进去了, 也被题目下面的示例分析给误导了. 题意: 有1-n种化学药剂 总共有m对试剂能反应,按不同的 ...
- Codeforces Round #260 (Div. 1) C. Civilization 树的中心+并查集
题目链接: 题目 C. Civilization time limit per test1 second memory limit per test256 megabytes inputstandar ...
- Codeforces Round #164 (Div. 2) A. Games【暴力/模拟/每个球队分主场和客场,所有球队两两之间进行一场比赛,要求双方球服颜色不能相同】
A. Games time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集
D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)
题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...
随机推荐
- iOS,几种设计模式
1.单例模式 2.观察者模式 3.委托代理 4.block回调 5.反射机制 单例模式 iOS单例模式的2种方式.根据线程安全的实现来区分,一种是使用@synchronized ,另一种是使用GCD的 ...
- python---tcp/ip网络编程
重点总结: 服务端:一直运行(while true),监听运行所在机器(ip)某端口,多线程或多进程接收客户端的socket请求 客户端:主动发起请求,需求知道服务器的ip和端口 服务端: # -*- ...
- 拥抱基于jquery.deferred的ajax,和层层嵌套回调的ajax说拜拜
前言 在项目中,无论是维护自己的代码,还是重构他人的项目代码,看到层层嵌套,异常冗余的某个function,那时我们的内心肯定是奔溃的! 在jquery1.5版本之前,如果我们某个操作需要多个ajax ...
- C#下没有注册类 (异常来自 HRESULT:0x80040154 (REGDB_E_CLASSNOTREG))
C#下没有注册类 (异常来自 HRESULT:0x80040154 (REGDB_E_CLASSNOTREG)) 原因:没有原生支持64位,而是以32位兼容方式运行 解决办法:在项目属性里设置“生成” ...
- Transaction Save Point (SET XACT_ABORT { ON | OFF })
ref:http://blog.csdn.net/wym3587/article/details/6940630 ref:http://www.cnblogs.com/jiajiayuan/archi ...
- ios下fixed回复框bug的解决方案
前几天做一个移动端的页面,要加个像微信那样附着在底部的回复框,按照做PC端网页的思路,首先是用fixed,在安卓上测了一下是好的,结果到朋友的iphone6p上就不行了,点击输入框之后它总会跳到屏幕中 ...
- C# MVC jsonp初接触成功
利用jsonp进行跨域请求资源 C# MVC ApiControllers准备如下: 1.需要在引用处右键管理NuGet安装jsonp插件 2.在Application_Start()中配置 Glob ...
- Python中的传值和引用
我写这个主要是给自己看,内容也就是便于自己理解,可能会不正确,但目前来看代码测试的结果是对的. python中一切皆对象. 当我们赋值时: a = 1 其实是先创建了一个整数常量1(也是一个对象,且已 ...
- 用ssh整合时,用sessionfactory的getCurrentSession()获取不到session
在用ssh整合时,一开始用的是getCurrentSession(),获取当前线程上的session,但是总是抛异常,不能获取. 后来用sessionfactory的openSession(),但是, ...
- spring " expected single matching bean but found 2" 问题一例。
初入java,使用spring时遇到一个问题,左边是一个接口和实现.右边是service和实现. @Service@Transactional(rollbackFor = Exception.clas ...