/*
题目大意:
就是一幢大厦中有0~99的楼层, 然后有1~5个电梯!每个电梯有一定的上升或下降速度和楼层的停止的位置!
问从第0层楼到第k层最少经过多长时间到达! 思路:明显的Dijkstra ,在建图的时候u->v可能有多个电梯到达,取时间最少的当作路径的权值!
如果我们发现 d[i] > d[j] + map[j][i] + 60, 那么说明从第0层到达第 i 层的时间大于从第j层
转移到其他电梯然后到达第 i 层的时间,那么就更新d[i]的值! */
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm> using namespace std;
const int INF = 0x3f3f3f3f;
int map[][];
int d[];
int t[];
int lift[];
int vis[];
int n, k; void addEdge(int a, int b, int tt){
int dist=abs(a-b)*tt;
if(map[a][b]>dist)
map[a][b]=map[b][a]=dist;
} void Dijkstra(){
int root=, p;
memset(vis, , sizeof(vis));
vis[]=;
for(int i=; i<=; ++i){
int minLen=INF;
for(int j=; j<=; ++j){
if(!vis[j] && d[j] > d[root]+map[root][j]+)
d[j] = d[root]+map[root][j]+;
if(!vis[j] && minLen>d[j]){
minLen=d[j];
p=j;
}
}
if(minLen==INF)
return ;
root=p;
vis[root]=;
}
} int main(){
while(scanf("%d%d", &n, &k)!=EOF){
memset(map, 0x3f, sizeof(map));
memset(d, 0x3f, sizeof(d));
d[]=;
for(int i=; i<=n; ++i)
scanf("%d", &t[i]);
char ch; for(int i=; i<=n; ++i){
int cnt=;
while(){
scanf("%d%c", &lift[cnt++], &ch);
for(int j=; j<cnt-; ++j)
addEdge(lift[cnt-], lift[j], t[i]); if(ch=='\n')
break;
}
} Dijkstra(); if(k==)
printf("0\n");
else if(d[k]!=INF)
printf("%d\n", d[k]-);
else printf("IMPOSSIBLE\n");
}
return ;
}

uva 10801 - Lift Hopping(最短路Dijkstra)的更多相关文章

  1. UVA 10801 Lift Hopping 最短路

    2种方式直接代码就可以了.注意首次不需要60S的转换 #include <map> #include <set> #include <list> #include ...

  2. UVa 10801 - Lift Hopping(dijkstra最短路)

    根据题意,以每一层楼为顶点,每个电梯可以到达的两层楼之间的秒数为每一条边的权值,以此构建一个无向图.然后利用dijkstra求出最短的时间,注意每次换乘电梯需要等待60s(因为同一个电梯上的楼层是相互 ...

  3. UVA 10801 Lift Hopping 电梯换乘(最短路,变形)

    题意: 有n<6部电梯,给出每部电梯可以停的一些特定的楼层,要求从0层到达第k层出来,每次换乘需要60秒,每部电梯经过每层所耗时不同,具体按 层数*电梯速度 来算.问经过多少秒到达k层(k可以为 ...

  4. UVa 10801 Lift Hopping (Dijkstra)

    题意:有一栋100层的大楼(标号为0~99),里面有n个电梯(不超过5个),以及要到达的层数(aid),然后是每个电梯走一层所需的时间, 再n行就是对应每个电梯可以到达的层数,数量不定.然后每装换一次 ...

  5. UVa 10801 Lift Hopping / floyd

    乘电梯 求到目标层的最短时间 有n个电梯 换一个电梯乘需要额外60秒 所以建图时每个电梯自己能到的层数先把时间算好 这是不需要60秒的 然后做floyd时 如果松弛 肯定是要换电梯 所以要加60秒 # ...

  6. UVA 10801 Lift Hopping

    算是一道需要动脑筋的最短路问题了,关键在于建图部分,对于n个电梯中每一个都要经过cnt个楼层,a[0],a[1],a[2],a[3],a[4],......a[cnt-1],那么对于任意两个楼层a[j ...

  7. UVa 10801 Lift Hopping【floyd 】

    题意:给出n个电梯,每个电梯的运行时间,每个电梯只能在相应的楼层停靠,而且没有楼梯,再给出想去的楼层,问从0层能否到达想去的楼层,求到达的最短时间 建图还是没有建出来--- 因为n<100,可以 ...

  8. HDU 1548 A strange lift (最短路/Dijkstra)

    题目链接: 传送门 A strange lift Time Limit: 1000MS     Memory Limit: 32768 K Description There is a strange ...

  9. uva 10986 - Sending email(最短路Dijkstra)

    题目连接:10986 - Sending email 题目大意:给出n,m,s,t,n表示有n个点,m表示有m条边,然后给出m行数据表示m条边,每条边的数据有连接两点的序号以及该边的权值,问说从点s到 ...

随机推荐

  1. Restore Oracle database to another server

    1. Copy or remotely mount the backupset folder from the source server to the target server 2. On the ...

  2. OpenMP之求和(用section分块完成)

    // Sum_section.cpp : 定义控制台应用程序的入口点. //section功能:; //1.指定其内部的代码划分给线程中某个线程,不同的section由不同的线程执行; //2.将一个 ...

  3. oracle创建视图

    create or replace view view_fwaqjcjl as select T_FWAQJCJL.FWAQJCJL_ID,T_FWAQJCJL.ZCBM,T_FWAQJCJL.FWB ...

  4. 一些Python的惯用法和小技巧:Pythonic

    Pythonic其实是个模糊的含义,没有确定的解释.网上也没有过多关于Pythonic的说明,我个人的理解是更加Python,更符合Python的行为习惯.本文主要是说明一些Python的惯用法和小技 ...

  5. JAVA CAS原理深度分析-转载

    参考文档: http://www.blogjava.net/xylz/archive/2010/07/04/325206.html http://blog.hesey.net/2011/09/reso ...

  6. [转载]并发编程之Operation Queue和GCD

    并发编程之Operation Queue http://www.cocoachina.com/applenews/devnews/2013/1210/7506.html 随着移动设备的更新换代,移动设 ...

  7. RCP:给GEF编辑器添加网格和标尺。

    网格和标尺效果如上图所示. 添加网格比较简单,也可以自己实现,主要思路是为编辑器添加一个GridLayer.但是还是建议参考eclipse自己的GEF样例来实现. 需要注意两个部分: 1.重写org. ...

  8. Spring4:JDBC

    数据库连接池 对一个简单的数据库应用,由于对数据库的访问不是很频繁,这时可以简单地在需要访问数据库时,就新创建一个连接,就完后就关闭它,这样做也不会带来什么性能上的开销.但是对于一个复杂的数据库应用, ...

  9. Jasmine测试ng Promises - Provide and Spy

    jasmine提供了很多些很实用的处理Promises的方法,首先我们来考虑下面的这个例子: angular.module("myApp.store").controller(&q ...

  10. silverlight中Combox绑定数据以及动态绑定默认选定项的用法

    在Sliverlight中,经常要用到下拉框Combox,然而Combox的数据绑定却是一件令初学者很头疼的事情.今天就来总结一下下拉框的使用方法: 下面写一个简单的例子吧.先写一个日期的Model, ...