准确性验证示例1:——基于三国志11数据库

数据准备:

挖掘模型:
依次为:Naive Bayes 算法、聚类分析算法、决策树算法、神经网络算法、逻辑回归算法、关联算法

提升图:

依次排名为:
1. 神经网络算法(92.69% 0.99)
2. 逻辑回归算法(92.39% 0.99)
3. 决策树算法(91.19% 0.98)
4. 关联算法(90.60% 0.98)
5. 聚类分析算法(89.25% 0.96)
6. Naive Bayes 算法(87.61 0.96)

Naive Bayes算法——分类矩阵

说明:
其他类的538个样本有482个预测正确,32个错分为军师类,24个错分为将军类,预测正确率为89.59%;
军师20个样本有13个预测正确,7个错分为其他类,预测正确率为65%;
将军112个样本有92个预测正确,16个错分为其他类,4个错分为军师类,预测正确率为82.14%。
聚类分析算法——分类矩阵

说明:
其他类的538个样本有536个预测正确,2个错分为将军类,预测正确率为99.63%;
军师20个样本有0个预测正确,20个错分为其他类,预测正确率为0%;
将军112个样本有62个预测正确,50个错分为其他类,预测正确率为55.36%。
决策树算法——分类矩阵

说明:
其他类的538个样本有538个预测正确,预测正确率为100%;
军师20个样本有0个预测正确,20个错分为其他类,预测正确率为0%;
将军112个样本有73个预测正确,39个错分为其他类,预测正确率为65.18%。
神经网络算法——分类矩阵

说明:
其他类的538个样本有524个预测正确,5个错分为军师类,9个错分为将军类,预测正确率为97.40%;
军师20个样本有5个预测正确,15个错分为其他类,预测正确率为25%;
将军112个样本有92个预测正确,20个错分为其他类,预测正确率为82.14%。
逻辑回归算法——分类矩阵

说明:
其他类的538个样本有526个预测正确,6个错分为军师类,6个错分为将军类,预测正确率为97.77%;
军师20个样本有5个预测正确,15个错分为其他类,预测正确率为25%;
将军112个样本有88个预测正确,24个错分为其他类,预测正确率为78.57%。
关联算法——分类矩阵

说明:
其他类的538个样本有519个预测正确,19个错分为军师类,预测正确率为96.47%;
军师20个样本有0个预测正确,20个错分为其他类,预测正确率为0%;
将军112个样本有88个预测正确,24个错分为其他类,预测正确率为78.57%。
分类矩阵——预测正确率汇总分析:

其他

军师

将军

神经网络算法

97.40%

25%

82.14%

逻辑回归算法

97.77%

25%

78.57%

决策树算法

100%

0%

65.18%

关联算法

96.47%

0%

78.57%

聚类分析算法

99.63%

0%

55.36%

Naive Bayes 算法

89.59%

65%

82.14%

可以看出Naive Bayes 算法在预测军师身份正确率最高,达到65%,决策树算法、关联算法、聚类分析算法为0%,神经网络算法、逻辑回归算法为25%;
决策树算法在预测其他身份正确率最高,达到100%;
神经网络算法、Naive Bayes 算法在预测将军身份正确率并列,达到82.14%。

准确性验证示例2:——基于个股数据
数据准备:

挖掘模型依次为:
StockClustering 聚类分析算法
StrockDecisionTrees 决策树算法
StockNeuralNetWork 神经网络算法
StockLogistic 逻辑回归算法

提升图:

依次排名为:
1. 逻辑回归算法(49.73% 0.52)
2. 神经网络算法(49.63% 0.53)
3. 聚类分析算法(48.13% 0.51)
4. 决策树算法(47.28% 0.50)
聚类分析算法——分类矩阵:

说明:
持平的114个样本有0个预测正确,91个错分为跌,23个错分为涨,预测正确率为0%;
跌的443个样本有340个预测正确,103个错分为涨,预测正确率为76.75%;
涨的380个样本有111个预测正确,269个错分为跌,预测正确率为29.21%。

决策树算法——分类矩阵:

说明:
持平的114个样本有0个预测正确,114个错分为跌,预测正确率为0%;
跌的443个样本有443个预测正确,预测正确率为100.00%;
涨的380个样本有0个预测正确,380个错分为跌,预测正确率为0%。

神经网络算法——分类矩阵:

说明:
持平的114个样本有0个预测正确,60个错分为跌,54个错分为涨,预测正确率为0%;
跌的443个样本有277个预测正确,166个错分为涨,预测正确率为62.53%;
涨的380个样本有188个预测正确,192个错分为跌,预测正确率为49.47%。

逻辑回归算法——分类矩阵:

说明:
持平的114个样本有0个预测正确,89个错分为跌,25个错分为涨,预测正确率为0%;
跌的443个样本有380个预测正确,63个错分为涨,预测正确率为85.78%;
涨的380个样本有86个预测正确,294个错分为跌,预测正确率为22.63%。

分类矩阵——预测正确率汇总分析:

 

持平

逻辑回归算法

0%

85.78%

22.63%

神经网络算法

0%

62.53%

49.47%

聚类分析算法

0%

76.75%

29.21%

决策树算法

0%

100.00%

0%

《BI那点儿事》数据挖掘各类算法——准确性验证的更多相关文章

  1. 《BI那点儿事—数据的艺术》目录索引

    原创·<BI那点儿事—数据的艺术>教程免费发布 各位园友,大家好,我是Bobby,在学习BI和开发的项目的过程中有一些感悟和想法,整理和编写了一些学习资料,本来只是内部学习使用,但为了方便 ...

  2. 大数据之路【第十四篇】:数据挖掘--推荐算法(Mahout工具)

    数据挖掘---推荐算法(Mahout工具) 一.简介 Apache顶级项目(2010.4) Hadoop上的开源机器学习库 可伸缩扩展的 Java库 推荐引擎(协同过滤).聚类和分类 二.机器学习介绍 ...

  3. 《BI那点儿事》数据挖掘初探

    什么是数据挖掘? 数据挖掘(Data Mining),又称信息发掘(Knowledge Discovery),是用自动或半自动化的方法在数据中找到潜在的,有价值的信息和规则. 数据挖掘技术来源于数据库 ...

  4. 《BI那点儿事》数据挖掘的主要方法

    一.回归分析目的:设法找出变量间的依存(数量)关系, 用函数关系式表达出来.所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式).回 ...

  5. 《BI那点儿事》浅析十三种常用的数据挖掘的技术

    一.前沿 数据挖掘就是从大量的.不完全的.有噪声的.模糊的.随机的数据中,提取隐含在其中的.人们事先不知道的但又是潜在有用的信息和知识的过程.数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种 ...

  6. 《BI那点儿事》Microsoft 聚类分析算法——三国人物身份划分

    什么是聚类分析? 聚类分析属于探索性的数据分析方法.通常,我们利用聚类分析将看似无序的对象进行分组.归类,以达到更好地理解研究对象的目的.聚类结果要求组内对象相似性较高,组间对象相似性较低.在三国数据 ...

  7. 《BI那点儿事》Microsoft 线性回归算法

    Microsoft 线性回归算法是 Microsoft 决策树算法的一种变体,有助于计算依赖变量和独立变量之间的线性关系,然后使用该关系进行预测.该关系采用的表示形式是最能代表数据序列的线的公式.例如 ...

  8. 《BI那点儿事》Microsoft 神经网络算法

    Microsoft神经网络是迄今为止最强大.最复杂的算法.要想知道它有多复杂,请看SQL Server联机丛书对该算法的说明:“这个算法通过建立多层感知神经元网络,建立分类和回归挖掘模型.与Micro ...

  9. 《BI那点儿事》Microsoft 顺序分析和聚类分析算法

    Microsoft 顺序分析和聚类分析算法是由 Microsoft SQL Server Analysis Services 提供的一种顺序分析算法.您可以使用该算法来研究包含可通过下面的路径或“顺序 ...

随机推荐

  1. PADSPCB权威指南-第一章 PADS软件系统(部分)(原创)

    PADSPCB权威指南-第一章(部分)豆丁地址:http://www.docin.com/p-707128286.html

  2. andriod studio

    初衷:使用andriod的webview调用html页面,生成app. AVD注意细节: RAM : 1G VM heap:228MB Graphics:software - GLES 2.0 存在的 ...

  3. 关于css3媒体查询和响应式布局

    响应式设计 响应式设计可根据所显示的屏幕大小而改变, 它呈现的每个屏幕看起来并不相同.按照可用的屏幕属性,响应式设计提供了 UI 的最佳效果. 例如,如果网站布局上有一个占据 25% 的屏幕宽度的侧边 ...

  4. Irrlicht 鬼火

    1.下载引擎 2.引入头文件 在VS2010下新建项目,项目->属性->配置属性->VC++目录 在包含目录中:添加 引擎安装目录\include\ 在库目录中:添加 引擎安装目录\ ...

  5. Failed to load JavaHL Library.

    以前使用的电脑是32位的,安装的svn可以正常使用,但是现在的电脑室64位的,安装好svn后,把项目提交到svn的过程中,总是弹出来一个错误的对话框: Failed to load JavaHL Li ...

  6. RCP:gef智能寻路算法(A star)

    本路由继承自AbstactRouter,参数只有EditPart(编辑器内容控制器),gridLength(寻路用单元格大小),style(FLOYD,FLOYD_FLAT,FOUR_DIR). 字符 ...

  7. STC12C5A60S2笔记6(中断)

    1. 基本特性 1) 中断源 STC12C5A60S2共有十个中断源,每个中断源可设置4类优先级:当相同优先级下各中断优先级由高到低依次如下: 1.1)INT0(外部中断0) 中断向量地址 0003H ...

  8. Java设计模式7:适配器模式

    适配器模式 适配器模式说的是,可以把一个类的接口变换成客户端所期待的另一种接口,使得原本因接口不匹配而无法在一起工作的两个类可以一起工作. 适配器模式的用途 适配器模式的用途,在网上找了一幅图,挺形象 ...

  9. 以代码爱好者角度来看AMD与CMD

    随着浏览器功能越来越完善,前端已经不仅仅是切图做网站,前端在某些方面已经媲美桌面应用.越来越庞大的前端项目,越来越复杂的代码,前端开发者们对于模块化的需求空前强烈.后来node出现了,跟随node出现 ...

  10. nw.js如何处理拖放操作

    nw.js如何处理拖放操作 其实拖放(drag-drop)操作是Html5的功能,不是nw.js的内置API,那么我们采用Html5应用一般的处理方法就可以了. 首先我们看一下一个正常的页面,直接拖放 ...