上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树。本章是哈夫曼树的C++实现。

目录
1. 哈夫曼树的介绍
2. 哈夫曼树的图文解析
3. 哈夫曼树的基本操作
4. 哈夫曼树的完整源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

哈夫曼树的介绍

Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。

定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。
这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。

(01) 路径和路径长度

定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
例子:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。

(02) 结点的权及带权路径长度

定义:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
例子:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。

(03) 树的带权路径长度

定义:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
例子:示例中,树的WPL= 1*100 + 2*80 + 3*20 + 3*10 = 100 + 160 + 60 + 30 = 350。

比较下面两棵树

上面的两棵树都是以{10, 20, 50, 100}为叶子节点的树。

左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360
右边的树WPL=350

左边的树WPL > 右边的树的WPL。你也可以计算除上面两种示例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。至此,应该堆哈夫曼树的概念有了一定的了解了,下面看看如何去构造一棵哈夫曼树。

哈夫曼树的图文解析

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,哈夫曼树的构造规则为:

1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
3. 从森林中删除选取的两棵树,并将新树加入森林;
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

以{5,6,7,8,15}为例,来构造一棵哈夫曼树。

第1步:创建森林,森林包括5棵树,这5棵树的权值分别是5,6,7,8,15。
第2步:在森林中,选择根节点权值最小的两棵树(5和6)来进行合并,将它们作为一颗新树的左右孩子(谁左谁右无关紧要,这里,我们选择较小的作为左孩子),并且新树的权值是左右孩子的权值之和。即,新树的权值是11。 然后,将"树5"和"树6"从森林中删除,并将新的树(树11)添加到森林中。
第3步:在森林中,选择根节点权值最小的两棵树(7和8)来进行合并。得到的新树的权值是15。 然后,将"树7"和"树8"从森林中删除,并将新的树(树15)添加到森林中。
第4步:在森林中,选择根节点权值最小的两棵树(11和15)来进行合并。得到的新树的权值是26。 然后,将"树11"和"树15"从森林中删除,并将新的树(树26)添加到森林中。
第5步:在森林中,选择根节点权值最小的两棵树(15和26)来进行合并。得到的新树的权值是41。 然后,将"树15"和"树26"从森林中删除,并将新的树(树41)添加到森林中。
此时,森林中只有一棵树(树41)。这棵树就是我们需要的哈夫曼树!

哈夫曼树的基本操作

哈夫曼树的重点是如何构造哈夫曼树。本文构造哈夫曼时,用到了以前介绍过的"(二叉堆)最小堆"。下面对哈夫曼树进行讲解。

1. 基本定义

template <class T>
class HuffmanNode{
public:
T key; // 权值
HuffmanNode *left; // 左孩子
HuffmanNode *right; // 右孩子
HuffmanNode *parent;// 父结点 HuffmanNode(){}
HuffmanNode(T value, HuffmanNode *l, HuffmanNode *r, HuffmanNode *p):
key(value),left(l),right(r),parent(p) {}
};

HuffmanNode是哈夫曼树的节点类。

template <class T>
class Huffman {
private:
HuffmanNode<T> *mRoot; // 根结点 public:
Huffman();
~Huffman(); // 前序遍历"Huffman树"
void preOrder();
// 中序遍历"Huffman树"
void inOrder();
// 后序遍历"Huffman树"
void postOrder(); // 创建Huffman树
void create(T a[], int size);
// 销毁Huffman树
void destroy(); // 打印Huffman树
void print();
private:
// 前序遍历"Huffman树"
void preOrder(HuffmanNode<T>* tree) const;
// 中序遍历"Huffman树"
void inOrder(HuffmanNode<T>* tree) const;
// 后序遍历"Huffman树"
void postOrder(HuffmanNode<T>* tree) const; // 销毁Huffman树
void destroy(HuffmanNode<T>* &tree); // 打印Huffman树
void print(HuffmanNode<T>* tree, T key, int direction);
};

Huffman是哈夫曼树对应的类,它包含了哈夫曼树的根节点和哈夫曼树的相关操作。

2. 构造哈夫曼树

/*
* 创建Huffman树
*
* 参数说明:
* a 权值数组
* size 数组大小
*
* 返回值:
* Huffman树的根节点
*/
template <class T>
void Huffman<T>::create(T a[], int size)
{
int i;
HuffmanNode<T> *left, *right, *parent;
MinHeap<T> *heap = new MinHeap<T>(); // 建立数组a对应的最小堆
heap->create(a, size); for(i=0; i<size-1; i++)
{
left = heap->dumpFromMinimum(); // 最小节点是左孩子
right = heap->dumpFromMinimum(); // 其次才是右孩子 // 新建parent节点,左右孩子分别是left/right;
// parent的大小是左右孩子之和
parent = new HuffmanNode<T>(left->key+right->key, left, right, NULL);
left->parent = parent;
right->parent = parent; // 将parent节点数据拷贝到"最小堆"中
if (heap->copyOf(parent)!=0)
{
cout << "插入失败!" << endl << "结束程序" << endl;
destroy(parent);
parent = NULL;
break;
}
} mRoot = parent; // 销毁最小堆
heap->destroy();
delete heap;
}

首先通过heap->create(a, size)来创建最小堆。最小堆构造完成之后,进入for循环。

每次循环时:

(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆);
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆;
(03) 然后,新建节点parent,并将它作为left和right的父节点;
(04) 接着,将parent的数据复制给最小堆中的指定节点。

二叉堆中已经介绍过堆,这里就不再对堆的代码进行说明了。若有疑问,直接参考后文的源码。其它的相关代码,也Please RTFSC(Read The Fucking Source Code)!

哈夫曼树的完整源码

哈夫曼树的源码共包括4个文件。

1. 哈夫曼树的节点类(HuffmanNode.h)

2. 哈夫曼树的实现文件(Huffman.h)

3. 哈夫曼树对应的最小堆(MinHeap.h)

4. 哈夫曼树的测试程序(HuffmanTest.cpp)

哈夫曼树(二)之 C++详解的更多相关文章

  1. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

  2. AVL树(二叉平衡树)详解与实现

    AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...

  3. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  4. 哈夫曼树(一)之 C语言详解

    本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...

  5. word2vec 中的数学原理二 预备知识 霍夫曼树

    主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码.  ...

  6. 哈夫曼树C++实现详解

    哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这个定 ...

  7. 树(二叉树 & 二叉搜索树 & 哈夫曼树 & 字典树)

    树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点 ...

  8. 【原创】JPEG图像密写研究(二) 哈夫曼树的建立

    [原创]记录自己研究的过程,仅供参考,欢迎讨论... 在根据JPEG图像文件结构读取完文件后,提取出其中DHT段,利用其中内容建立哈夫曼树,便于之后译码工作.这里需要注意的是文件中的哈夫曼表数量不固定 ...

  9. 哈夫曼树详解——PHP代码实现

    在介绍哈夫曼树之前需要先了解一些专业术语 路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L ...

随机推荐

  1. Software Testing hw2

    Fault的定义:可能导致系统或功能失效的异常条件(Abnormal condition that can cause an element or an item tofail.),可译为“故障”. ...

  2. erlang学习笔记(shell命令)

    erlang shell 命令: help(). 可以查看erlang shell内置命令. 比如:m(Mod),可以查看模块Mod. 待续..

  3. Python成长笔记 - 基础篇 (十)

    本节内容 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Queu ...

  4. 转 powerdesigner12.5在64位JDK下连接mysql数据库问题

    前因:由于项目在研发的过程中,数据库字段需要不停的增加和修改,导致最初设计的数据库原型无法使用,后来就想到用powerdesinger来反转数据库表结构. 环境:win7 64位系统,本机装有64位j ...

  5. js jq 获取网页元素宽度

    Javascript: IE中:document.body.clientWidth ==> BODY对象宽度document.body.clientHeight ==> BODY对象高度d ...

  6. 【C-数组】

    一.一维数组 ①.定义方式 类型说明符 数组名 [常量表达式]; 如:int array[10]; 注意: 1) 数组的类型实际上是指数组元素的类型.对于同一个数组,其所有元素的数据类型都是相同的. ...

  7. unity渲染层级关系小结(转存)

    最近连续遇到了几个绘制图像之间相互遮挡关系不正确的问题,网上查找的信息比较凌乱,所以这里就把自己解决问题中总结的经验记录下来. Unity中的渲染顺序自上而下大致分为三层. 最高层为Camera层,可 ...

  8. mono for android学习过程系列教程(7)

    首先说个抱歉,这段时候由于个人原因未及时更新博客.故此今天先给大家来个小料. 以后会及时更新我自己的学习过程. 不多说,终于私人生活安定下来了,可以安心学习.直接进入主体: 今天咱们摒弃所有的前面的知 ...

  9. EQueue - 一个C#写的开源分布式消息队列的总体介绍

    前言 本文想介绍一下前段时间在写enode时,顺便实现的一个分布式消息队列equeue.这个消息队列的思想不是我想出来的,而是通过学习阿里的rocketmq后,自己用c#实现了一个轻量级的简单版本.一 ...

  10. PostgreSQL基础整理(一)

    1. 创建数据库: 1)登录bin目录,createdb.exe -U postgres -e mydb; -U 表示本次操作的登录用户名,如果不写会取windows登录的账户,如Administra ...