Problem Introduction

An inversion of a sequence \(a_0,a_1,\cdots,a_{n-1}\) is a pair of indices \(0 \leq i < j < n\) such that \(a_i>a_j\). The number of inversions of a sequence in some sense measures how close the sequence is to being sorted. For example, a sorted(in non-descending order) sequence contains no inversions at all, while in a sequence sorted in descending order any two elements constitute an inversion (for a total of \(n(n-1)/2\) inversions).

Problem Description

Task.The goal in this problem is to count the number of inversions of a given sequence.

Input Format.The first line contains an integer \(n\), the next one contains a sequence of integers \(a_0,a_1,\cdots,a_{n-1}\)

Constraints.\(1 \leq n \leq 10^5, 1 \leq a_i \leq 10^9\) for all \(0 \leq i < n\).

Output Format.Output the number of inversions in the sequence.

Sample 1.
Input:

5
2 3 9 2 9

Output:

2

Solution

# Uses python3
import sys

def merge_and_count(a, b):
    c = []
    number_of_inversions = 0
    i = j = 0
    while i < len(a) and j < len(b):
        if a[i] <= b[j]:
            c.append(a[i]); i += 1
        else:
            c.append(b[j]); j += 1
            number_of_inversions += len(a)-i
    while i < len(a):
        c.append(a[i]); i += 1
    while j < len(b):
        c.append(b[j]); j += 1
    return c, number_of_inversions

def get_number_of_inversions(a, b, left, right):
    number_of_inversions = 0
    if right - left <= 1:
        return number_of_inversions
    ave = (left + right) // 2
    number_of_inversions += get_number_of_inversions(a, b, left, ave)
    number_of_inversions += get_number_of_inversions(a, b, ave, right)
    b, count = merge_and_count(a[left:ave], a[ave:right])
    a[left:right] = b
    return number_of_inversions + count

if __name__ == '__main__':
    input = sys.stdin.read()
    n, *a = list(map(int, input.split()))
    b = n * [0]
    print(get_number_of_inversions(a, b, 0, len(a)))

[UCSD白板题] Number of Inversions的更多相关文章

  1. [UCSD白板题] The Last Digit of a Large Fibonacci Number

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  2. [UCSD白板题 ]Small Fibonacci Number

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  3. [UCSD白板题] Huge Fibonacci Number modulo m

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  4. [UCSD白板题] Compute the Edit Distance Between Two Strings

    Problem Introduction The edit distinct between two strings is the minimum number of insertions, dele ...

  5. [UCSD白板题] Take as Much Gold as Possible

    Problem Introduction This problem is about implementing an algorithm for the knapsack without repeti ...

  6. [UCSD白板题] Primitive Calculator

    Problem Introduction You are given a primitive calculator that can perform the following three opera ...

  7. [UCSD白板题] Points and Segments

    Problem Introduction The goal in this problem is given a set of segments on a line and a set of poin ...

  8. [UCSD白板题] Pairwise Distinct Summands

    Problem Introduction This is an example of a problem where a subproblem of the corresponding greedy ...

  9. [UCSD白板题] Covering Segments by Points

    Problem Introduction You are given a set of segments on a line and your goal is to mark as few point ...

随机推荐

  1. Android 4.0 源代码结构

    Android源码的第一级目录结构   Android/abi (abi相关代码.ABI:application binary interface,应用程序二进制接口)   Android/bioni ...

  2. 转载:shell脚本之sed使用----替换、变量、转义字符

    sed替换的基本语法为:----s后面跟的是分隔符,原字符串可使用.*这种正则表达式进行整行替换 代码如下: sed 's/原字符串/替换字符串/' 单引号里面,s表示替换,三根斜线中间是替换的样式, ...

  3. linux提取指定字符的行列并生成新文件(awk命令)

    如图所示,命名为file文件的表头有BP.A1.TEST等 假如想提取含有"ADD"的行和该行对应列的"BP"和"P"值,则需要用到以下命令 ...

  4. oracle启动脚本 .

        .#!/bin/bash set -x su -oracle >>EON lsnrctl start sqlplus /nolog >>EOF conn / as sy ...

  5. highcharts曲线图

    在做项目时,用highcharts做过曲线图,X轴是从后台获取的时间数据,Y轴是从后台获取的Int型数据 1.我的后台数据封装成json格式,数据较多,展示部分数据 2.曲线图的展示 3.前端jsp页 ...

  6. JavaWeb 学习0010-今日问题 2016-12-3

    2016-12-3 1. 今天要做的第一个问题就是,怎么把网页变得好看点: addStudent/listStudent页面都有改动 其中 list页面还有了<c:if 的语句这是还没练习过得知 ...

  7. jQuery Mobile 导航栏

    jQuery Mobile 导航栏 导航栏由一组水平排列的链接构成,通常位于页眉或页脚内部. 默认地,导航栏中的链接会自动转换为按钮(无需 data-role="button"). ...

  8. WCF账户密码认证

    记录一下我实现WCF用户认证与权限控制的实现方法, 也让其他网友少走一些弯路. 内容写得非常小白(因为我也是小白嘛), 比较详细, 方便WCF知识基础薄的朋友 主要分为下面几个步骤 作为例子, 创建最 ...

  9. Oracle中三种循环(For、While、Loop)

    1.ORACLE中的GOTO用法 DECLARE x number; BEGIN x := 9; <<repeat_loop>> --循环点 x := x - 1; DBMS_ ...

  10. 蚁群算法求解旅行商问题(附c和matlab源代码)

    前几天写了个模拟退火算法的程序,然后又陆陆续续看了很多群智能算法,发现很多旅行商问题都采用蚁群算法来求解,于是开始写蚁群算法的模板.网上关于蚁群算法的理论很多就不再这里赘述了,下面直接上代码和进行简单 ...