bzoj 1010 (单调决策优化)
能够非常好的证明单调决策性质。用 记sum[i]=sigma(C[1],C[2].....C[k]);f[i]=sum[i]+i; c=l-1;
有转移dp[i]=min( dp[j]+(f[i]-f[jk]-c)^2); 假死 有2个决策j<k, 对于i点。k决策更优秀 于是能够得到
dp[k]+(f[i]-f[k]-c)^2<dp[j]+(f[i]-f[j]-c)^2;
对于一个x>i 如果f[x]=f[i]+v;对于决策j,k。若决策k优于决策j ,必定
dp[k]+(f[x]-f[k]-c)^2<dp[j]+(f[x]-f[j]-c)^2;
于是dp[k]+(f[i]+v-f[k]-c)^2<dp[j]+(f[i]-v-f[j]-c)^2;
仅仅要2v(f[i]-f[k]-c)+v^2<2v(f[i]-f[j]-c)
优于v>0 f[k]>f[j] 这是必定成立的 ,所以能够非常好的证明单调决策性质。然后能够依据《1D/1D动态规划初步》论文的写法做。
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <string>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int inf = 0x3fffffff;
const int mmax = 500010;
LL C[mmax];
LL dp[mmax];
LL sum[mmax];
int n;
LL L;
struct node
{
int l,r;
int d;
node() {}
node(int l,int r,int d):l(l),r(r),d(d) {}
void print()
{
printf("%d %d %d\n",l,r,d);
}
}Q[mmax];
LL sqr(LL x)
{
return x*x;
}
void up(int i,int j)
{
dp[i]=dp[j]+sqr(sum[i]-sum[j]+i-j-1-L);
}
bool ok(int i,int j,int d)
{
return dp[d]+sqr(sum[i]-sum[d]+i-d-1-L)>=dp[j]+sqr(sum[i]-sum[j]+i-j-1-L);
}
int find(int l,int r,int j,int d)
{
int mid;
r++;
while(l<r)
{
mid=(l+r)>>1;
if(ok(mid,j,d))
r=mid;
else
l=mid+1;
}
return r;
}
void make()
{
int head=0,tail=0;
dp[0]=0;
Q[tail++]=node(0,n,0);
for(int i=1;i<=n;i++)
{
while(Q[head].r<i)
head++;
if(Q[head].l<i)
Q[head].l=i;
up(i,Q[head].d);
int tmp=0;
while(head<tail)
{
if(ok(Q[tail-1].l,i,Q[tail-1].d))
{
tmp=Q[tail-1].l;
tail--;
}
else
{
tmp=find(Q[tail-1].l,Q[tail-1].r,i,Q[tail-1].d);
Q[tail-1].r=tmp-1;
break;
}
}
if(tmp<=n)
Q[tail++]=node(tmp,n,i);
}
}
int main()
{ while(cin>>n>>L)
{
sum[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&C[i]);
sum[i]=sum[i-1]+C[i];
}
make();
printf("%lld\n",dp[n]);
}
return 0;
}
bzoj 1010 (单调决策优化)的更多相关文章
- bzoj 3126 单调队列优化dp
能转移的最左是其左边完整区间的最右左端点,最右是能覆盖它的最左左端点-1 #pragma GCC optimize ("O3") #include<cstdio> #i ...
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP
BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ 2806: [Ctsc2012]Cheat [广义后缀自动机 单调队列优化DP 二分]
2806: [Ctsc2012]Cheat 题意: 多个主串和多个询问串,每次询问将询问串分成多个连续子串,如果一个子串长度>=L且在主串中出现过就是熟悉的 如果熟悉的字符串长度>=询问串 ...
- bzoj 2806 [Ctsc2012]Cheat——广义后缀自动机+单调队列优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2806 只想着怎么用后缀数据结构做,其实应该考虑结合其他算法. 可以二分那个长度 L .设当前 ...
- bzoj 1855 dp + 单调队列优化
思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...
随机推荐
- JavaScript函数练习
1. 判断一个数是否是素数 function isSushu (n) { n = n || 0; var isSu = true; for (var i = 2; i <= Math.sqrt( ...
- Shiro结合Spring boot开发权限管理系统
前一篇文章说了,我从开始工作就想有一个属于自己的博客系统,当然了,我想的是多用户的博客,大家都可以发文章记笔记,我最初的想法就是这样. 博客系统搭建需要使用的技术: 1.基于Spring boot 2 ...
- weak和alias
一.强符号和弱符号 在C语言中,如果多个模块定义同名全局符号时,链接器认为函数和已初始化的全局变量(包括显示初始化为0)是强符号,未初始化的全局变量是弱符号. 根据这个定义,Linux链接器使用下面的 ...
- PatentTips - Method for network interface sharing among multiple virtual machines
BACKGROUND Many computing systems include a network interface card (NIC) to provide for communicatio ...
- Qt之QSS(动态属性)
简述 QSS可以定制应用程序的外观,无需关注Qt样式背后的魔力.从非常轻微到极其复杂的调整,样式表都可以做到.对于一个完全定制和独特的用户体验,QtQuick和QGraphicsView是更好的选择. ...
- 生成apk文件遇到的编译问题error: format not a string literal and no format arguments
编译错误时使用的android-ndk为r9的版本号.报下面错误: "Compile++ thumb : cocosdenshion_static <= SimpleAudioEngi ...
- HDU 1542 Atlantis(矩形面积并)
HDU 1542 Atlantis 题目链接 题意:给定一些矩形,求面积并 思路:利用扫描线,因为这题矩形个数不多,直接暴力扫就能够了.假设数据大.就要用线段树 代码: #include <cs ...
- Making User-Managed Backups-17.4、Making User-Managed Backups of Online Tablespaces and Datafiles
17.4.Making User-Managed Backups of Online Tablespaces and Datafiles 当数据库打开时,能够备份一个在线表空间全部和一个指定的数据文件 ...
- 登录安全验证+AJAX认证服务--流程图
- 4.bind绑定
#include <iostream> #include <string> #include <boost/bind.hpp> #include <boost ...