bzoj 1010 (单调决策优化)
能够非常好的证明单调决策性质。用 记sum[i]=sigma(C[1],C[2].....C[k]);f[i]=sum[i]+i; c=l-1;
有转移dp[i]=min( dp[j]+(f[i]-f[jk]-c)^2); 假死 有2个决策j<k, 对于i点。k决策更优秀 于是能够得到
dp[k]+(f[i]-f[k]-c)^2<dp[j]+(f[i]-f[j]-c)^2;
对于一个x>i 如果f[x]=f[i]+v;对于决策j,k。若决策k优于决策j ,必定
dp[k]+(f[x]-f[k]-c)^2<dp[j]+(f[x]-f[j]-c)^2;
于是dp[k]+(f[i]+v-f[k]-c)^2<dp[j]+(f[i]-v-f[j]-c)^2;
仅仅要2v(f[i]-f[k]-c)+v^2<2v(f[i]-f[j]-c)
优于v>0 f[k]>f[j] 这是必定成立的 ,所以能够非常好的证明单调决策性质。然后能够依据《1D/1D动态规划初步》论文的写法做。
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <string>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int inf = 0x3fffffff;
const int mmax = 500010;
LL C[mmax];
LL dp[mmax];
LL sum[mmax];
int n;
LL L;
struct node
{
int l,r;
int d;
node() {}
node(int l,int r,int d):l(l),r(r),d(d) {}
void print()
{
printf("%d %d %d\n",l,r,d);
}
}Q[mmax];
LL sqr(LL x)
{
return x*x;
}
void up(int i,int j)
{
dp[i]=dp[j]+sqr(sum[i]-sum[j]+i-j-1-L);
}
bool ok(int i,int j,int d)
{
return dp[d]+sqr(sum[i]-sum[d]+i-d-1-L)>=dp[j]+sqr(sum[i]-sum[j]+i-j-1-L);
}
int find(int l,int r,int j,int d)
{
int mid;
r++;
while(l<r)
{
mid=(l+r)>>1;
if(ok(mid,j,d))
r=mid;
else
l=mid+1;
}
return r;
}
void make()
{
int head=0,tail=0;
dp[0]=0;
Q[tail++]=node(0,n,0);
for(int i=1;i<=n;i++)
{
while(Q[head].r<i)
head++;
if(Q[head].l<i)
Q[head].l=i;
up(i,Q[head].d);
int tmp=0;
while(head<tail)
{
if(ok(Q[tail-1].l,i,Q[tail-1].d))
{
tmp=Q[tail-1].l;
tail--;
}
else
{
tmp=find(Q[tail-1].l,Q[tail-1].r,i,Q[tail-1].d);
Q[tail-1].r=tmp-1;
break;
}
}
if(tmp<=n)
Q[tail++]=node(tmp,n,i);
}
}
int main()
{ while(cin>>n>>L)
{
sum[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&C[i]);
sum[i]=sum[i-1]+C[i];
}
make();
printf("%lld\n",dp[n]);
}
return 0;
}
bzoj 1010 (单调决策优化)的更多相关文章
- bzoj 3126 单调队列优化dp
能转移的最左是其左边完整区间的最右左端点,最右是能覆盖它的最左左端点-1 #pragma GCC optimize ("O3") #include<cstdio> #i ...
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP
BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ 2806: [Ctsc2012]Cheat [广义后缀自动机 单调队列优化DP 二分]
2806: [Ctsc2012]Cheat 题意: 多个主串和多个询问串,每次询问将询问串分成多个连续子串,如果一个子串长度>=L且在主串中出现过就是熟悉的 如果熟悉的字符串长度>=询问串 ...
- bzoj 2806 [Ctsc2012]Cheat——广义后缀自动机+单调队列优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2806 只想着怎么用后缀数据结构做,其实应该考虑结合其他算法. 可以二分那个长度 L .设当前 ...
- bzoj 1855 dp + 单调队列优化
思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...
随机推荐
- select选中值,传this
<select onChange = "a(this)"></select> function a(obj){ $(obj).find("opti ...
- [原创]Linux 下 redis 链接一次
刚接触 Linux ,在 Linux 下安装 redis 链接redis 出现了以下问题 Could not connect to Redis at 127.0.0.1:6379: Connecti ...
- c的面向对象思想记录
在一家公司做实习生,努力学习,keep moving. //c1.h typedef struct { +]; int (*tr)(); } trans; //c1.c #include<str ...
- 紫书 习题8-4 UVa 11491 (贪心)
题意:给你一个数, 要求删去一些数字, 使得剩下的数字最大. 这道题用贪心解决. 大家想一想, 两个数比较大小, 肯定先比较第一位的数,然后依次比较第二位,以此类推. 既然我们要保证最后的数字最大, ...
- Camera Calibration 相机标定:原理简介(二)
2 针孔相机模型 常见的相机标定中,使用的相机多为针孔相机(Pinhole camera),也就是大家熟知的小孔成像理论.将其中涉及的坐标系之间的相互转换抽离出来,即为针孔相机模型的核心. 上图所示的 ...
- Ubuntu ctrl+alt会导致窗口还原的问题
Ubuntu ctrl+alt会导致窗口还原的问题 本来以为是compizConfig的问题,后来在系统config中找到键盘>快捷键:恢复窗口,删除这个快捷键,就好了: 原来这里写的是ctrl ...
- [MST] Test mobx-state-tree Models by Recording Snapshots or Patches
Testing models is straightforward. Especially because MST provides powerful tools to track exactly h ...
- E-UTRA channel bandwidths per operating band (36.101)
E-UTRA channel bandwidths per operating band (36.101) watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/ ...
- 小贝_redis list类型学习
redis list类型 一.查看list类型的命令 二.list命令具体解释 一.查看list类型的命令 1.在终端数据 help @list 127.0.0.1:6379>help @li ...
- less09 判断语句
less //.mixin (@a) when (lightness(@a) >= 50%) { //255/2=127.5 // background-color: black; //} // ...