POJ 2079 Triangle 旋转卡壳求最大三角形
求点集中面积最大的三角形...显然这个三角形在凸包上...
但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了...
随着底边点的递增, 最大点显然是在以l(i,j)为底边进行卡壳旋转
但分析了一下这种卡壳的复杂度到了O(n^2) 感觉不太靠谱...不知道有没有更强的方法...我感觉两个点卡的时候都是凸函数...不是很好卡的样子...如果我想到了我再更新这贴...
/********************* Template ************************/
#include <set>
#include <map>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std; #define EPS 1e-8
#define MAXN 100005
#define MOD (int)1e9+7
#define PI acos(-1.0)
#define INF ((1LL)<<50)
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max3(a,b,c) (max(max(a,b),c))
#define min3(a,b,c) (min(min(a,b),c))
#define BUG cout<<"BUG! "<<endl
#define LINE cout<<"------------------"<<endl
#define L(t) (t << 1)
#define R(t) (t << 1 | 1)
#define Mid(a,b) ((a + b) >> 1)
#define lowbit(a) (a & -a)
#define FIN freopen("in.txt","r",stdin)
#pragma comment (linker,"/STACK:102400000,102400000") // typedef long long LL;
// typedef unsigned long long ULL;
// typedef __int64 LL;
// typedef unisigned __int64 ULL;
// int gcd(int a,int b){ return b?gcd(b,a%b):a; }
// int lcm(int a,int b){ return a*b/gcd(a,b); } /********************* F ************************/
struct POINT{
double x,y;
POINT(double _x = , double _y = ):x(_x),y(_y){};
void show(){
cout<<x<<" "<<y<<endl;
}
};
POINT p[MAXN],s[MAXN];
double dist(POINT p1,POINT p2){
return((p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y));
}
double multiply(POINT sp,POINT ep,POINT op){
return (sp.x-op.x) * (ep.y-op.y) - (ep.x-op.x) * (sp.y-op.y);
}
bool ptcmp(POINT a,POINT b){ // 极角排序cmp p[]为全局变量
if(multiply(a,b,p[]) == ) return dist(p[],a) < dist(p[],b);
return (multiply(a,b,p[]) > );
}
int Graham_scan(POINT p[],POINT s[],int n){ // 返回凸包点的个数(修改版处理共线,无凸包)
int i,k = ,top = ;
for(i = ; i < n ; i++) // 取y最小且x最小的点为凸包起点
if((p[i].y < p[k].y) || ((p[i].y == p[k].y) && (p[i].x < p[k].x)))
k = i;
swap(p[],p[k]); // 起点设置为p[0]
if(n == ) { // 只有两个点不构成凸包的特判
s[] = p[];
s[] = p[];
return ;
}
sort(p+,p+n,ptcmp); // 极角排序
for(i = ; i < ; i++)
s[i] = p[i]; // 前三个点入栈
if(n == && multiply(s[],s[],s[]) != ) return ;// 解决三个点且不共线的bug...
while(multiply(s[],s[top],s[top-]) == && i < n){ // 前三个点的共线特判
s[top-] = s[top];
s[top] = p[i++];
}
if(i == n){ //所有点都共线的特判
s[] = s[top];
return ;
}
for(; i < n ; i++){
while(multiply(p[i],s[top],s[top-]) >= )
top--;
s[++top] = p[i];
}
return top + ;
}
double Triangle_area(POINT a,POINT b,POINT c){
return fabs(multiply(a,b,c)/);
}
double Rotation_Calipers(int len){ //旋转卡壳求凸包最大三角形
double ans = ;
for(int i = ; i < len ; i++){
int j = (i + ) % len;
int k = (j + ) % len;
while(j != i && k != i){
ans = max(ans,Triangle_area(s[i],s[j],s[k]));
while(Triangle_area(s[i],s[j],s[(k+)%len]) > Triangle_area(s[i],s[j],s[k]))
k = (k + ) % len;
j = (j + ) % len;
}
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("ou.txt","w",stdout);
int n;
while(~scanf("%d",&n)){
if(n == -) break;
for(int i = ; i < n ; i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
int len = Graham_scan(p,s,n);
double ans = Rotation_Calipers(len);
printf("%.2lf\n",ans);
}
return ;
}
POJ 2079 Triangle 旋转卡壳求最大三角形的更多相关文章
- POJ 2079 Triangle [旋转卡壳]
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 9525 Accepted: 2845 Descript ...
- hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)
链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
- CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)
You are given n points with integer coordinates on the plane. Points are given in a way such that th ...
- poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方
旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...
- UVa 1453 - Squares 旋转卡壳求凸包直径
旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...
- [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖
旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...
- POJ2187 旋转卡壳 求最长直径
给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...
- POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 7625 Accepted: 2234 Descript ...
- poj 2079 Triangle,旋转卡壳求点集的最大三角形
给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...
随机推荐
- vue中Object.defineProperty用法
function def (obj, key, val, enumerable) { Object.defineProperty(obj, key, { value: val, enumerable: ...
- Linux-TCP/IP, IPv4地址类别摘要
TCP/IP分层: application layer transport layer internet ...
- opencv3.4.1和vs2017配置
官网下载opencv,双击之后会将文件提取出来,提取出来的文件放在一个合适的位置(选个好地方,不要乱改,环境的配置依赖于这个目录),我放在了D:\program下 配置环境变量: 右键此电脑--> ...
- 到2023年将会有超过90%的PC采用SSD硬盘
本文转载自超能网,其他媒体转载需经超能网同意 现在买电脑或者自己装机,还有谁不要SSD硬盘吗?这个问题似乎没什么可说的,SSD硬盘各种好,装机可以说是必选了,但实际上现在的SSD适配率并没有想象中那么 ...
- yes---重复输出指定的字符串
yes命令在命令行中输出指定的字符串,直到yes进程被杀死.不带任何参数输入yes命令默认的字符串就是y. 语法 yes(参数) 参数 字符串:指定要重复打印的字符串. 实例 [root@localh ...
- 题解 P3374 【【模板】树状数组 1】
恩,这是AC的第一道树状数组呢. 本蒟蒻以前遇到RMQ问题一般都用线段树或ST表,可惜ST表不支持在线修改,而线段树代码量又太大. 如今终于找到了折中方案:树状数组!!!!代码量小,还支持修改! 树状 ...
- ZooKeeper 配置注意事项 zoo.cfg
一 平台 二 软件环境 1) JDK 1.6 以上 (最好1.7 Hadoop 某一项安装时候需要 1.7) 2) 至少 3 个节点 (2m +1 ...
- DataTable转成Json
/// <summary> /// DataTable转成Json /// </summary> /// <param name=&quo ...
- 团队作业——团队项目Alpha版本发布
该作业所属课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 作业要求链接 https://edu.cnblogs. ...
- Android 使用Gallery组件实现图片播放预览
Gallery(画廊)扩展了LayoutParams,以此提供可以容纳当前的转换信息和先前的位置转换信息的场所. Activity package com.app.test01; import com ...