CF369E. ZS and The Birthday Paradox
/*
cf369E. ZS and The Birthday Paradox
http://codeforces.com/contest/711/problem/E
抽屉原理+快速幂+逆元+勒让德定理+费马小定理+欧拉定理+数论
题解:https://amoshyc.github.io/ojsolution-build/cf/cf369/pe.html 坑点:
1、long long 类型的常量一定要加LL,否则1<<n只在int范围内
2、带模的题目,最后一定要判断是否答案为负,答案为负数要加mod
*/
#include <cstdio>
#include <algorithm>
using namespace std;
const int mod=;
long long n,k;
long long Legendre(long long n,long long p)//勒让德定理:O(logn) 算出n!中有多少个p
{
long long ans=;
while(n>)
{
ans+=n/p;
n/=p;
}
return ans;
}
long long pow(long long base,long long n)
{
long long ans=;
base=base%mod;//先取模防止爆long long
while(n>)
{
if(n&)
ans=(ans*base)%mod;
base=(base*base)%mod;
n>>=;
}
return ans;
}
int main()
{
//freopen("cf711E.in","r",stdin);
scanf("%I64d%I64d",&n,&k);
if(n<= && k>(1LL<<n))//抽屉原理
{
printf("1 1\n");
return ;
}
long long gcd=Legendre(k-,);
long long p=,q;//p/q;
q=((n%(mod-))*((k-)%(mod-))-gcd%(mod-))%(mod-)+mod-;//欧拉函数降幂
//q=(n%(mod-1))*((k-1)%(mod-1))+mod-1-gcd; this is a wrong way!!!!!!
q=pow(,q)%mod;//q=2^( n(k-1)-gcd ) <=> 2^((n(k-1)-gcd)%phi(mod)+phi(mod) );
if(k->=mod)//抽屉原理得出在分子中必定存在一个%mod=0,标程大坑,不能直接输出1 1,即此处不约分。
p=;
else
{
long long val=pow(,n);
for(long long i=;i<=k-;i++)
{
p=(p*((val-i))%mod)%mod;
}
if(gcd)
{
p=(p*pow(pow(,gcd),mod-))%mod;
//p=(p+mod)/pow(2,gcd);
}
}
p=q-p;
if(p<)//判断是否为负
p+=mod;
printf("%I64d %I64d\n",p,q);
return ;
}
CF369E. ZS and The Birthday Paradox的更多相关文章
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- ZS and The Birthday Paradox
ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- 【Codeforces711E】ZS and The Birthday Paradox [数论]
ZS and The Birthday Paradox Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample ...
- Codeforces 711E ZS and The Birthday Paradox
传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...
- cf711E ZS and The Birthday Paradox
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that g ...
- 【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- codeforces 711E. ZS and The Birthday Paradox 概率
已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...
随机推荐
- struts1——静态ActionForm与动态ActionForm
在struts1中,我们能够使用ActionForm来获取从client端提交上来的数据.并通过action配置中的name属性.将某个ActionForm配置到某次请求应答的Action中.作为本次 ...
- leetcode解题文件夹
点击打开链接点击打开链接点击打开链接參考文献:http://blog.csdn.net/lanxu_yy/article/details/17848219 只是本文准备用超链接的方式连接到对应解答页面 ...
- 求int型数据在内存中存储时1的个数
1.求int型数据在内存中存储时1的个数 输入一个int型数据,计算出该int型数据在内存中存储时1的个数. 我们非常easy想到例如以下方法: #include <iostream> u ...
- UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)
UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...
- AIX的系统备份
AIX克隆盘即AIX的rootvg的备用替换磁盘,用于保留AIX的原始状态,它可作为软件的升级后出现问题快速回退到原系统的备份手段,也可用于测试两个不同版本的AIX系统.系统可保留两块引导磁盘,而且都 ...
- 微信小程序蓝牙连接小票打印机
1.连接蓝牙 (第一次发表博客) 第一步打开蓝牙并搜索附近打印机设备// startSearch: function() { var that = this wx.openBluetoothAda ...
- JS——BOM操作(基本用法与实现:open()、close()、scrollTop等了解)
(1)window.open() 定义和用法 open() 方法用于打开一个新的浏览器窗口或查找一个已命名的窗口 语法 window.open(URL,name,specs,replace) [默认填 ...
- pythonOCC版 瓶子代码
#!/usr/bin/env python # -*- coding:utf-8 -*- ##Copyright 2009-2015 Thomas Paviot (tpaviot@gmail.com) ...
- 第7章 性能和可靠性模式 Server Clustering(服务器群集)
上下文 您正在设计要部署应用程序的基础结构层.运行要求包括无法满足的可用性或性能能力,因为基础结构中存在性能瓶颈或故障单点. 影响因素 设计基础结构时,请考虑下列影响因素: 用户希望在使用应用程序时这 ...
- React安装 脚手架create-react-app安装步骤及问题
create-react-app 是来自于 Facebook的脚手架,通过该命令我们无需配置就能快速构建 React 开发环境. 安装步骤: 1.先装脚手架 PS:第一次装直接在打开CMD默认 ...