题意:

给 nnn个长度为 lll 且互不相交的开区间 (xi,xi+l)(x_{i}, x_{i}+l)(xi​,xi​+l) ,每个区间有一个移动速度 vvv,v∈1,−1v∈1,-1v∈1,−1。你可以在某一时刻给所有区间同时增加一个速度 www,要求满足 ∣w∣&lt;=wmax|w|&lt;= w_{max}∣w∣<=wmax​

求有对多少对 (i,j)(i&lt;j)(i,j)(i&lt;j)(i,j)(i<j) 移动的过程中能同时覆盖原点(坐标为 000 的点)。

数据·范围:

( n&lt;=105n&lt;=10^5n<=105) (l,wmax&lt;=108l,w_{max}&lt;=10^8l,wmax​<=108).

看图说话:

我们设图中的横坐标为原坐标系中的横坐标,纵坐标代表时间。

蓝色柱子代表一个区间所覆盖的轨迹,黄色区域为原点移动所能覆盖的地方。

显然,两个区间的相互重叠部分与原点重合当且仅当两个蓝色柱子在黄色区域处有公共部分。

我们可以将所有区间分为2类,1.速度为1,即向右移动的区间。2.速度为-1,即向左移动的区间,并分别将这些区间排序,依次枚举向右移动的区间,在向左移动的区间中进行二分。因为 wmax&gt;=1w_{max}&gt;=1wmax​>=1,所以我们要找到一个符合要求的初始横坐标最小的一个。至于如何判断任意两条蓝柱和黄色区域是否有交点,我们只需拿出两条蓝色柱子最靠外的两条直线,求交点,并将交点的横坐标带入到黄色区域边缘的直线上,看带而得出的纵坐标的大小是否小于等于带入求出的蓝线交点的纵坐标即可。时间复杂度为O(nlogn)O(nlogn)O(nlogn)

CF #487 (Div. 2) D. A Shade of Moonlight 构造_数形结合的更多相关文章

  1. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces Round #487 (Div. 2) A Mist of Florescence (暴力构造)

    C. A Mist of Florescence time limit per test 1 second memory limit per test 256 megabytes input stan ...

  3. Codeforces Round #487 (Div. 2) C. A Mist of Florescence 构造

    题意: 让你构造一个 n∗mn*mn∗m 矩阵,这个矩阵由 444 种字符填充构成,给定 444 个整数,即矩阵中每种字符构成的联通块个数,n,mn,mn,m 需要你自己定,但是不能超过505050. ...

  4. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

  5. CF #375 (Div. 2) D. bfs

    1.CF #375 (Div. 2)  D. Lakes in Berland 2.总结:麻烦的bfs,但其实很水.. 3.题意:n*m的陆地与水泽,水泽在边界表示连通海洋.最后要剩k个湖,总要填掉多 ...

  6. CF #374 (Div. 2) D. 贪心,优先队列或set

    1.CF #374 (Div. 2)   D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...

  7. CF #374 (Div. 2) C. Journey dp

    1.CF #374 (Div. 2)    C.  Journey 2.总结:好题,这一道题,WA,MLE,TLE,RE,各种姿势都来了一遍.. 3.题意:有向无环图,找出第1个点到第n个点的一条路径 ...

  8. CF #371 (Div. 2) C、map标记

    1.CF #371 (Div. 2)   C. Sonya and Queries  map应用,也可用trie 2.总结:一开始直接用数组遍历,果断T了一发 题意:t个数,奇变1,偶变0,然后与问的 ...

  9. CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组

    题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...

随机推荐

  1. shell问题-报错即退出

    如下: #!/bin/bash set -o errexit 在最开头加上 set -o errexit 即可(或者 set -e) 要关闭的时候 set +o errexit        (或者 ...

  2. 网络教程(2)光纤和RF编码简介

    光纤: 想象一个symbol是light off 另一个是light on 另一种传输信息的方式using radio waves(无线电波: 这个router 内部以很高的频率变换电压 (例如2.4 ...

  3. HDU2188 - 悼念512汶川大地震遇难同胞——选拔志愿者【巴什博弈】

    对于四川同胞遭受的灾难,全国人民纷纷伸出援助之手,几乎每个省市都派出了大量的救援人员,这其中包括抢险救灾的武警部队,治疗和防疫的医护人员,以及进行心理疏导的心理学专家.根据要求,我校也有一个奔赴灾区救 ...

  4. SurgingFunction

  5. Apache负载均衡与Tomcat集群配置学习(Windows环境)

    本文主要参考自http://www.iteye.com/topic/985404?dhcc,经由实际操作配置操并记录而成. 由于最近的一个Java开发项目用到了Tomcat中间件作为web服务器,刚开 ...

  6. 如何在IE浏览器里模仿DomContentLoaded

    稍微了解一点框架的事件绑定的都知道 window.onload 事件需要在页面所有内容(包括图片.flash.iframe等)加载完后,才执行,但往往我们更希望在 DOM 一加载完就执行脚本,而各大框 ...

  7. 【Android 系统开发】使用 Source InSight 阅读 Android 源代码

    1. 安装 Source Insight (1) Source Insight 相关资源 安装相关资源 : -- 下载地址 : http://www.sourceinsight.com/down35. ...

  8. MySQL8.0修改临时密码

    解决MySQL8.0报错:Unknown system variable 'validate_password_policy' 一.问题描述 1.在安装MySQL8.0时,修改临时密码,因密码过于简单 ...

  9. python面向对象与结构成员之间的关系

    1面向对象结构分析:----面向对象整体大致分为两块区域:-------第一部分:静态字段(静态变量)部分-------第二部分:方法部分--每个区块可以分为多个小部分 class A: countr ...

  10. ROS-SLAM-自主导航

    前言:无. 前提:已下载并编译了相关功能包集,如还未下载,可通过git下载:https://github.com/huchunxu/ros_exploring.git 一.启动仿真环境 cd ~/ca ...