这道题的分析方法我很需要学习学习。

一开始我想的是f[i][j]表示前i个数子序列长度为j的个数

然后发现新加入一个数的时候会和前面的重复,这个时候不知道该怎么处理这种重复。

其实我再继续往下想就可以想到,这些重复的序列都有一个特征,结尾都是新加入的这个数

那么这就启示我们可以利用前面算出的结果来算出这个值而舍去

然后题解的分析是这样。

先考虑暴力该怎么做,然后再想怎么优化

暴力的话显然是枚举每一位去或者不取,然后去重复。不算去重的话时间复杂度为2^n

然后我们尝试用动态的思想来优化,最后的答案可以从前面的哪个状态推过来?

我们看最后一位取或者不取,前面是2^(n-1),这一位取或者不取两种情况,乘以2

就是2^n

那么我们可以尝试设一下f[i]表示前i项子序列的长度

那么有f[i] = f[i-1] * 2

但是很显然怎么去重复是个很大的问题。

重复的子序列的结尾一定是当前的这个数

那么以当前这个数为结尾的子序列为多少呢?

根据定义可以得知为f[j-1],j为前i-1项里面当前项a[i]最后一次出现的位置

因为j前面的所有子序列加上一个j就是以当前这个数为结尾的个数

如果j不存在,那么就不用减去。

要注意这里j是最后一个,因为后面的位置包含了前面的位置的结果。

最后要注意f[0] = 1,这样方便我们来更新值,同时最后输出答案的时候减去1

以后学习动规的时候看题解一定要看是怎么推出来的,自己为什么没想到

#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 112345;
const int MOD = 1e9 + 7;
int a[MAXN], f[MAXN], path[MAXN], n; int main()
{
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d", &a[i]);
f[0] = 1;
REP(i, 1, n + 1)
{
f[i] = (f[i-1] << 1) % MOD;
if(path[a[i]] > 0) f[i] = (f[i] - f[path[a[i]] - 1] + MOD) % MOD;
path[a[i]] = i;
}
printf("%d\n", f[n] - 1);
return 0;
}

51nod 子序列的个数 (动规分析方法)的更多相关文章

  1. 51nod 子序列的个数(动态规划)

    子序列的个数 给定一个正整数序列,序列中元素的个数和元素值大小都不超过105, 求其所有子序列的个数.注意相同的只算一次:例如 {1,2,1}有子序列{1} {2} {1,2} {2,1}和{1,2, ...

  2. LCS(最长公共子序列)动规算法正确性证明

    今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下, ...

  3. HDU 1159 Common Subsequence (动规+最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. 关于DP动规

    今天学了动规,简单记录一下自己理解了的:(要不俺就忘了) 首先,啥是DP??? 动态规划,其实就是组合子问题的解来解决整个问题的解,由于每个子问题他只判断一次,所以不会重复计算,那就很牛啊!!! 专业 ...

  5. 【noip 2009】 乌龟棋 记忆化搜索&动规

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  6. [LeetCode] Count Different Palindromic Subsequences 计数不同的回文子序列的个数

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

  7. 洛谷 P2569[SCOI2010]股票交易(动规+单调队列)

    //只能写出裸的动规,为什么会有人能想到用单调队列优化Orz 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测 ...

  8. - > 动规讲解基础讲解一——01背包(模板)

    作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重 ...

  9. [LeetCode] 730. Count Different Palindromic Subsequences 计数不同的回文子序列的个数

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

随机推荐

  1. max带来的冲突

    题目要求: /* * Copyright (c) 2014, 烟台大学计算机学院 * All rights reserved. * 文件名:sum123.cpp * 作 者:林海云 * 完毕日期:20 ...

  2. lenovo G系列重装系统

    lenovo G41 的笔记本默认安装的是win8 中文版 的操作系统,使用非常不方便,用U盘重装成WIN7的系统. 1.用启动工具软件制作U盘启动盘.  详细能够參照  http://www.uqi ...

  3. 【DNN 系列】 MVC 分页

    MVC分页可采用插件形式, 有MvcPage那个插件但是我觉得那个是假分页 有点影响效率 所以网上找了一个例子来 做分页 1, PagerQuery.cs public class PagerQuer ...

  4. Asp.Net 中使用 水晶报表(上)

    Asp.Net中使用水晶报表(上) 在我们对VS.Net中的水晶报表(Crystal Reports)进行研究之前,我和我朋友对如何将这个复杂的东东加入我们的Web应用有着非常的好奇心.一周以后,在阅 ...

  5. win10安装jdk8 配置环境变量

    参考:https://jingyan.baidu.com/article/6b97984dd257b41ca2b0bf86.html  

  6. PostgreSQL中流复制pg_basebackup做了什么

    解压PostgreSQL源代码包后可以到如下路径:postgresql-9.2.4\src\backend\replication下可以看到,basebackup.c,另外还可以看到walreceiv ...

  7. UVa 1599 Ideal Path【BFS】

    题意:给出n个点,m条边,每条边上涂有一个颜色,求从节点1到节点n的最短路径,如果最短路径有多条,要求经过的边上的颜色的字典序最小 紫书的思路:第一次从终点bfs,求出各个节点到终点的最短距离, 第二 ...

  8. JDOJ 2939: Suffix Automaton 广义后缀自动机_统计子串

    建立广义后缀自动机,对每个节点都建立各自的 $Parent$ 数组. 这样方便统计,不会出现统计错误. 考虑新加入一个字符. 1 这条转移边已经存在,显然对答案没有贡献. 2 这条转移边不存在,贡献即 ...

  9. NodeJS学习笔记 (31)定时器-timers

    https://github.com/chyingp/nodejs-learning-guide

  10. POJ-1456 Supermarket 贪心问题 有时间限制的最小化惩罚问题

    题目链接:https://cn.vjudge.net/problem/POJ-1456 此题与HDU-1789完全是一道题 题意 有N件商品,分别给出商品的价值和销售的最后期限,只要在最后日期之前销售 ...