(下载的时候没有提示 不知道是正在下 还是出现错误 卡着了)。。一直没有反应

下载前要以管理员身份运行 sudo su 再 python examples/finetune_flickr_style/assemble_data.py --workers=1 --images=2000 --seed 831486

或者在命令前加sudo

参考了 http://blog.csdn.net/lujiandong1/article/details/50495454

在使用这个教程时,主要遇到了两个问题:

1、数据下不下来。

  1. python examples/finetune_flickr_style/assemble_data.py --workers=1 --images=2000 --seed 831486

运行上述指令时,程序莫名其妙就不动了,也不下载文件,程序也没有挂掉,好像进入了死锁状态。

查看源程序:assemble_data.py,可以看出assemble_data.py用了大量多线程,多进程。我的解决方案就是改源程序,不使用进程来下载了。并且,对下载进行了超时限定,超过6s就认为超时,进而不下载。

====================================================================================================

assemble_data.py中使用多线程,多进程的源代码如下:

  1. pool = multiprocessing.Pool(processes=num_workers)
  2. map_args = zip(df['image_url'], df['image_filename'])
  3. results = pool.map(download_image, map_args)

===================================================================================================

我修改后的源码如下:

  1. #!/usr/bin/env python3
  2. """
  3. Form a subset of the Flickr Style data, download images to dirname, and write
  4. Caffe ImagesDataLayer training file.
  5. """
  6. import os
  7. import urllib
  8. import hashlib
  9. import argparse
  10. import numpy as np
  11. import pandas as pd
  12. from skimage import io
  13. import multiprocessing
  14. import socket
  15. # Flickr returns a special image if the request is unavailable.
  16. MISSING_IMAGE_SHA1 = '6a92790b1c2a301c6e7ddef645dca1f53ea97ac2'
  17. example_dirname = os.path.abspath(os.path.dirname(__file__))
  18. caffe_dirname = os.path.abspath(os.path.join(example_dirname, '../..'))
  19. training_dirname = os.path.join(caffe_dirname, 'data/flickr_style')
  20. def download_image(args_tuple):
  21. "For use with multiprocessing map. Returns filename on fail."
  22. try:
  23. url, filename = args_tuple
  24. if not os.path.exists(filename):
  25. urllib.urlretrieve(url, filename)
  26. with open(filename) as f:
  27. assert hashlib.sha1(f.read()).hexdigest() != MISSING_IMAGE_SHA1
  28. test_read_image = io.imread(filename)
  29. return True
  30. except KeyboardInterrupt:
  31. raise Exception()  # multiprocessing doesn't catch keyboard exceptions
  32. except:
  33. return False
  34. def mydownload_image(args_tuple):
  35. "For use with multiprocessing map. Returns filename on fail."
  36. try:
  37. url, filename = args_tuple
  38. if not os.path.exists(filename):
  39. urllib.urlretrieve(url, filename)
  40. with open(filename) as f:
  41. assert hashlib.sha1(f.read()).hexdigest() != MISSING_IMAGE_SHA1
  42. test_read_image = io.imread(filename)
  43. return True
  44. except KeyboardInterrupt:
  45. raise Exception()  # multiprocessing doesn't catch keyboard exceptions
  46. except:
  47. return False
  48. if __name__ == '__main__':
  49. parser = argparse.ArgumentParser(
  50. description='Download a subset of Flickr Style to a directory')
  51. parser.add_argument(
  52. '-s', '--seed', type=int, default=0,
  53. help="random seed")
  54. parser.add_argument(
  55. '-i', '--images', type=int, default=-1,
  56. help="number of images to use (-1 for all [default])",
  57. )
  58. parser.add_argument(
  59. '-w', '--workers', type=int, default=-1,
  60. help="num workers used to download images. -x uses (all - x) cores [-1 default]."
  61. )
  62. parser.add_argument(
  63. '-l', '--labels', type=int, default=0,
  64. help="if set to a positive value, only sample images from the first number of labels."
  65. )
  66. args = parser.parse_args()
  67. np.random.seed(args.seed)
  68. # Read data, shuffle order, and subsample.
  69. csv_filename = os.path.join(example_dirname, 'flickr_style.csv.gz')
  70. df = pd.read_csv(csv_filename, index_col=0, compression='gzip')
  71. df = df.iloc[np.random.permutation(df.shape[0])]
  72. if args.labels > 0:
  73. df = df.loc[df['label'] < args.labels]
  74. if args.images > 0 and args.images < df.shape[0]:
  75. df = df.iloc[:args.images]
  76. # Make directory for images and get local filenames.
  77. if training_dirname is None:
  78. training_dirname = os.path.join(caffe_dirname, 'data/flickr_style')
  79. images_dirname = os.path.join(training_dirname, 'images')
  80. if not os.path.exists(images_dirname):
  81. os.makedirs(images_dirname)
  82. df['image_filename'] = [
  83. os.path.join(images_dirname, _.split('/')[-1]) for _ in df['image_url']
  84. ]
  85. # Download images.
  86. num_workers = args.workers
  87. if num_workers <= 0:
  88. num_workers = multiprocessing.cpu_count() + num_workers
  89. print('Downloading {} images with {} workers...'.format(
  90. df.shape[0], num_workers))
  91. #pool = multiprocessing.Pool(processes=num_workers)
  92. map_args = zip(df['image_url'], df['image_filename'])
  93. #results = pool.map(download_image, map_args)
  94. socket.setdefaulttimeout(6)
  95. results = []
  96. for item in map_args:
  97. value = mydownload_image(item)
  98. results.append(value)
  99. if value == False:
  100. print 'Flase'
  101. else:
  102. print '1'
  103. # Only keep rows with valid images, and write out training file lists.
  104. print len(results)
  105. df = df[results]
  106. for split in ['train', 'test']:
  107. split_df = df[df['_split'] == split]
  108. filename = os.path.join(training_dirname, '{}.txt'.format(split))
  109. split_df[['image_filename', 'label']].to_csv(
  110. filename, sep=' ', header=None, index=None)
  111. print('Writing train/val for {} successfully downloaded images.'.format(
  112. df.shape[0]))
 

修改主要有以下几点:

1、#!/usr/bin/env python3 使用python3

2、

  1. #pool = multiprocessing.Pool(processes=num_workers)
  2. map_args = zip(df['image_url'], df['image_filename'])
  3. #results = pool.map(download_image, map_args)
  4. socket.setdefaulttimeout(6)
  5. results = []
  6. for item in map_args:
  7. value = mydownload_image(item)
  8. results.append(value)
  9. if value == False:
  10. print 'Flase'
  11. else:
  12. print '1'
  13. # Only keep rows with valid images, and write out training file lists.
  14. print len(results)

只使用单线程下载,不使用多线程,多进程下载。并且,设定连接的超时时间为6s,socket.setdefaulttimeout(6)。

经过上述改进,就可以把数据下载下来。

===================================================================================================

2、

在运行命令:

  1. ./build/tools/caffe train -solver models/finetune_flickr_style/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel

时遇到错误:

Failed to parse NetParameter file: models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel

出错的原因是我们传入的数据bvlc_reference_caffenet.caffemodel 并不是二进制的。

原因:因为我是在win7下,把bvlc_reference_caffenet.caffemodel下载下来,再使用winSCP传输到服务器上,直接在服务器上使用wget下载,速度太慢了,但是在传输的过程中winSCP就把bvlc_reference_caffenet.caffemodel的格式给篡改了,导致bvlc_reference_caffenet.caffemodel不是二进制的。

解决方案,把winSCP的传输格式设置成二进制,那么就可以解决这个问题。

详情见博客:http://blog.chinaunix.net/uid-20332519-id-5585964.html

Fine-tuning CaffeNet for Style Recognition on “Flickr Style” Data 数据下载遇到的问题的更多相关文章

  1. CaffeNet用于Flickr Style数据集上的风格识别

    转自 http://blog.csdn.net/liumaolincycle/article/details/48501423 微调是基于已经学习好的模型的,通过修改结构,从已学习好的模型权重中继续训 ...

  2. (原)caffe中fine tuning及使用snapshot时的sh命令

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5946041.html 参考网址: http://caffe.berkeleyvision.org/tu ...

  3. Fine Tuning

    (转载自:WikiPedia) Fine tuning is a process to take a network model that has already been trained for a ...

  4. L23模型微调fine tuning

    resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有 ...

  5. style="visibility: hidden" 和 style=“display:none”区别

    大多数人很容易将CSS属性display和visibility混淆,它们看似没有什么不同,其实它们的差别却是很大的. visibility属性用来确定元素是显示还是隐藏的,这用visibility=& ...

  6. Html style="visibility:hidden"与style="display:none"的区别

    style="visibility:hidden": 使对象在网页上隐藏,但该对象在网页上所占的空间没有改变. style="display:none": 使对 ...

  7. ckplayer 中的style.swf 中的 style.xml 中的修改方法

    style.swf ---- > style.zip ---- > 解压成文件夹 ---- > 打开style.xml ---- > 修改 最重要的是修改保存style.xml ...

  8. matplotlib 可视化 —— 定制画布风格 Customizing plots with style sheets(plt.style)

    Customizing plots with style sheets - Matplotlib 1.5.1 documentation 1. 使用和显示其他画布风格 >> import ...

  9. style="visibility: hidden"和 style=“display:none”之间的区别

    style=“display:none” 隐藏页面元素: <html> <head> <script type="text/javascript"&g ...

随机推荐

  1. WPF 解决拼接屏全屏的问题

    需求: 8块1920*1080屏幕拼接 橙色4个框每个框(1920*1080)拼接成一个1920*1080 红色4个框每个框(1920*1080)拼接成一个1920*1080 橙色和红色作为displ ...

  2. 优动漫PAINT用户界面介绍

    使用优动漫PAINT能够快速实现工程巨大的漫画.插画以及动画,从13年发布至今一直备受好评,目前优动漫PAINT1.6.6.1是最新的版本,新版本的完善也受到更多年轻伙伴的青睐,使用优动漫PAINT可 ...

  3. jquery的语法

    $(this).hide() - 隐藏当前元素 $("p").hide() - 隐藏所有段落 $(".test").hide() - 隐藏所有 class=&q ...

  4. win10卸载瑞星

    下载了一个软件,没有注意就不小心装上了瑞星这个流氓软件 百度N种办法并不能解决~ 我试过正常卸载.试过WIN自带卸载.试过重装再卸载 最后采取最傻瓜最暴力的办法 ctrl+alt+delete 打开任 ...

  5. Mybatis批量插入的代码实现

    简单的学习总结一下,希望能帮到需要的同学! 1.mapper.xml文件sql语句如下: <insert id="insertBatch" parameterType=&qu ...

  6. 【codeforces 723E】One-Way Reform

    [题目链接]:http://codeforces.com/contest/723/problem/E [题意] 给你一个无向图; 让你把这m条边改成有向图; 然后使得出度数目等于入度数目的点的数目最多 ...

  7. MySQL多线程数据导入导出工具Mydumper

    http://afei2.sinaapp.com/?p=456 今天在线上使用mysqldump将数据表从一个库导入到另外一个库,结果速度特别慢,印象中有个多线程的数据导入导出工具Mydumper,于 ...

  8. kfka学习笔记一:使用Python操作Kafka

    1.准备工作 使用python操作kafka目前比较常用的库是kafka-python库,但是在安装这个库的时候需要依赖setuptools库和six库,下面就要分别来下载这几个库 https://p ...

  9. mysql数据库优化原则

    一.一个例子 数据库需要处理的行数: 189444*1877*13482~~~479亿 如果在关联字段上加上合适的索引: 数据库需要处理的行数:368006*1*3*1~~~110万 MySQL通常是 ...

  10. oracle 解除锁表sql

    select b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_object a,dba_objects b where b ...