Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 9957   Accepted: 4537

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other
barn. Thus, the farm transportation system can be represented as a tree. 



Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P 



* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 

Source

USACO 2002 February

题目大意:问一个数删掉最少条边变成一个仅仅有n个结点的子树

ac代码

#include<stdio.h>
#include<string.h>
#define min(a,b) (a>b? b:a)
#define INF 0xfffffff
int dp[220][220];
int pre[220],head[220],vis[220],dig[220];
int n,p,cnt;
struct s
{
int u,v,w,next;
}edge[220*2];
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void tree_dp(int u)
{
int i,j,k;
for(i=0;i<=p;i++)
{
dp[u][i]=INF;
}
dp[u][1]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
tree_dp(v);
for(k=p;k>=1;k--)
{
dp[u][k]=dp[u][k]+1;
for(j=1;j<k;j++)
{ dp[u][k]=min(dp[u][k],dp[u][j]+dp[v][k-j]);
}
}
}
}
int DP(int u)
{
tree_dp(u);
int ans=dp[u][p];
int i;
for(i=1;i<=n;i++)
{
ans=min(ans,dp[i][p]+1);
// printf("%d\n",dp[i][1]);
}
return ans;
}
int main()
{
//int n,p;
while(scanf("%d%d",&n,&p)!=EOF)
{
int i;
memset(dig,0,sizeof(dig));
memset(head,-1,sizeof(head));
cnt=0;
for(i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
dig[b]++;
}
int root;
for(i=1;i<=n;i++)
{
if(dig[i]==0)
root=i;
}
printf("%d\n",DP(root));
}
}

POJ题目1947 Rebuilding Roads(树形dp)的更多相关文章

  1. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  2. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  3. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  5. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  6. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  7. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  8. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  9. POJ 1947 Rebuilding Roads

    树形DP..... Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8188 Accepted: ...

随机推荐

  1. [转]Android自定义Adapter的ListView的思路及代码

    本文转自:http://www.jb51.net/article/37236.htm 在开发中,我们经常使用到ListView这个控件.Android的API也提供了许多创建ListView适配器的快 ...

  2. mysql自动增长的有关问题,怎么恢复从1开始

    mysql自动增长的问题,如何恢复从1开始在一个表中我设置到autoid为自动增长列例如有如下数据 1 张三 男 202 王五 男 223 李四 男 254 陈大 男 19 现在我把 autoid=3 ...

  3. Discuz! X3.1云平台QQ互联的Unknown column 'conuintoken' in 'field list' 解决办法

    http://www.discuz.net/thread-3482497-1-1.html 由于程序安装默认数据表的结构和QQ互联数据表结构不同,安装Discuz! X3.1和升级Discuz! X3 ...

  4. java aop面向切面编程

    最近一直在学java的spring boot,一直没有弄明白aop面向切面编程是什么意思.看到一篇文章写得很清楚,终于弄明白了,原来跟python的装饰器一样的效果.http://www.cnblog ...

  5. matlab数值数据的表示方法,输出数据以及相关函数

    数据类型的分类: 1.整型 无符号整型和带符号整形 带符号整形的最大值是127 >>x=int8(129) 输出结果是x=127 >>x=unit8(129) 输出结果是x=1 ...

  6. 基于fpga的256m的SDRAM控制器

    2018/7/26 受教于邓堪文老师,开始真真学习控制sdram 由于自己买的sdram模块是256的,原来老师的是128,所以边学边改,不知道最后好不好使,但是我有信心 一.sdram的初始化 sd ...

  7. LINUX-查看进程内环境变量

    ps -ef find PID cat /proc/$PID/environ | grep ENV

  8. js 随机数范围

    Math.floor(Math.random()*(high-low+1) +low)

  9. Linux常用shell命令持续总结

    1. 查看端口运行 netstat -lnp|grep 80 2. 定时任务 Crontab -e 编辑任务 Crontab -l 查看当前任务列表 /var/log/cron-* 任务日志

  10. npm和gulp学习

    npm的使用 node Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,是一种JavaScript语言运行平台,和浏览器这个运行平台是同一个概念. npm np ...