https://codeforces.com/contest/1117/problem/D

题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间的方法有几种,有不同数量的魔法宝石和不同分法的方法算不同的方法,

分析:根据一些猜想可以推出递推式f[n]=f[n-1]+f[n-m]  ; 答案也比较好猜想,牺牲一个然后分解 m 个

然后就是简单的构造矩阵快速幂

或者使用无敌杜教

这里给出点杜教心得 , 有时候并不是只用给出8项 , 而是给的数据越多 , 答案越正确 , 所以有时候用杜教不过就考虑给许多许多项杜教 , 可以在时间运行下的极限

矩阵快速幂

#include<stdio.h>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
typedef vector<ll>vec;
typedef vector<vec>mat; const int M = ;
ll n;int m;
int V;
mat mul(mat &A , mat &B)
{
mat C(A.size() , vec(B.size()));
for(int i= ; i<A.size() ; i++)
{
for(int k= ; k<B.size() ; k++)
{
if(A[i][k]==)
continue;
for(int j= ; j<B[].size() ; j++)
{
if(B[k][j]==)
continue;
C[i][j] = (C[i][j]%M+A[i][k]*B[k][j]%M)%M;
}
}
}
return C;
}
mat pow(mat A,ll n)
{
mat B(A.size(),vec(A.size()));
for(int i= ; i<A.size() ; i++)
B[i][i]=; while(n>)
{
if(n&)
B = mul(B,A);
A = mul(A,A);
n >>= ;
}
return B;
}
void so( )
{
mat A(m,vec(m));///构造矩阵
// A[0][0]=1;A[0][1]=2;A[0][2]=1;A[0][3]=0;A[0][4]=0;A[0][5]=0;
// A[1][0]=1;A[1][1]=0;A[1][2]=0;A[1][3]=0;A[1][4]=0;A[1][5]=0;
// A[2][0]=0;A[2][1]=0;A[2][2]=1;A[2][3]=3;A[2][4]=3;A[2][5]=1;
// A[3][0]=0;A[3][1]=0;A[3][2]=0;A[3][3]=1;A[3][4]=2;A[3][5]=1;
// A[4][0]=0;A[4][1]=0;A[4][2]=0;A[4][3]=0;A[4][4]=1;A[4][5]=1;
// A[5][0]=0;A[5][1]=0;A[5][2]=0;A[5][3]=0;A[5][4]=0;A[5][5]=1;
//printf("520");
for(int i= ; i<m ; i++)
for(int j= ; j<m ; j++)
A[i][j]=;
A[][]=;A[][m-]=;
for(int i= ; i<m ; i++)
A[i][i-]=; A = pow(A,n-m+);///第m项没有算哦
ll ans=;
for(int i= ; i<m ; i++)
{ ans=(ans+A[][i]+M)%M; } printf("%lld\n",(ans+M)%M); } int main()
{ scanf("%lld%d",&n,&m); so(); return ;
}

牛逼杜教

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b)
{
ll res=;
a%=mod;
assert(b>=);
for(; b; b>>=)
{
if(b&)res=res*a%mod;
a=a*a%mod;
}
return res;
}
ll _,n;
namespace linear_seq
{
const int N=;
ll res[N],base[N],_c[N],_md[N];
vector<ll> Md;
void mul(ll *a,ll *b,int k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-; i>=k; i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b)
{
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];
_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt; p>=; p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (int i=k-; i>=; i--) res[i+]=res[i];
res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s)
{
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s))
{
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n)
{
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L;
B=T;
b=d;
m=;
}
else
{
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n)
{
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
ll f[];
int main()
{
ll n,m;
scanf("%lld%lld",&n,&m);
for(int i=;i<=m;i++) f[i]=;
for(int i=m;i<=;i++)
f[i]=(f[i-]+f[i-m])%mod;
vector<int>v;
n++;
for(int i=;i<=;i++)
v.push_back(f[i]); //至少8项,越多越好。
printf("%lld\n",linear_seq::gao(v,n-)%mod);
}

D. Magic Gems(矩阵快速幂 || 无敌杜教)的更多相关文章

  1. eduCF#60 D. Magic Gems /// 矩阵快速幂

    题目大意: 给定n m (1≤N≤1e18, 2≤M≤100) 一个魔法水晶可以分裂成连续的m个普通水晶 求用水晶放慢n个位置的方案modulo 1000000007 (1e9+7) input 4 ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  3. [递推+矩阵快速幂]Codeforces 1117D - Magic Gems

    传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...

  4. Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)

    题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 ...

  5. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  6. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  7. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

  8. HDU 5171 GTY's birthday gift 矩阵快速幂

    GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)

    https://nanti.jisuanke.com/t/31721 题意 有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同:2.若三种食物都有的情况,巧克力不能在中 ...

随机推荐

  1. vim 添加插件

    vim 的功能可以通过向它添加plugin得以扩展.所谓的plugin不过是一个vim会自动载入执行的脚本.把一个脚本放到你的plugin目录就可以了,非常容易. plugin基本上分为两类:  全局 ...

  2. 微信小程序怎么获取用户输入

    能够获取用户输入的组件,需要使用组件的属性bindchange将用户的输入内容同步到 AppService. <input id="myInput" bindchange=& ...

  3. [原创]SQL 把表中字段存储的逗号隔开内容转换成列表形式

    我们日常开发中,不管是表设计问题抑或是其他什么原因,或多或少都会遇到一张表中有一个字段存储的内容是用逗号隔开的列表. 具体效果如下图: ------> 从左边图转换成右边图,像这种需求,我们难免 ...

  4. 633. Sum of Square Numbers 是否由两个完全平方数构成

    [抄题]: Given a non-negative integer c, your task is to decide whether there're two integers a and b s ...

  5. TOP命令 详解CPU 查看多个核心的利用率按1

    top命令是linux下常用的工具,可以查看各个进程的CPU使用情况.先看一个实例: 这是Ramnode双核VPS的top显示结果: 左上角可以看到CPU的使用率是11.3%,但是看下面的进程,plu ...

  6. suse配置dhcp服务器

    Suse  dhcp服务器安装在安装系统时勾选 Suse dhcp 默认配置文件 /etc/dhcpd.conf Suse dhcp 启动程序 /etc/init.d/dhcpd restart 配置 ...

  7. OpenCV---resize

    转自http://www.cnblogs.com/korbin/p/5612427.html 在图像处理过程中,有时需要把图像调整到同样大小,便于处理,这时需要用到图像resize() 原函数void ...

  8. Ubuntu14.04下安装glog

    下载原始代码编译 1. Clone Source Code  glog git clone https://github.com/google/glog 2. Install dependencies ...

  9. session的应用----验证码

    昨天登录功能中叙述了密码 用户名的数据库验证以及转发 那么这篇文章在昨天的基础上 处理验证码的验证功能,今天需要用到session域,session用于一次会话. package cn.lijun.d ...

  10. DB2触发器简单例子

    db2使用版本9.7 创建A .B两个表,A表数据有更新.删除.插入时,将A表ID记录放入B表 1.create table A (id varchar(5),name varchar(30)); c ...