Sorting It All Out

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 38100 Accepted: 13453

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y.

Sorted sequence cannot be determined.

Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

4 6

A<B

A<C

B<C

C<D

B<D

A<B

3 2

A<B

B<A

26 1

A<Z

0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.

Inconsistency found after 2 relations.

Sorted sequence cannot be determined.

Source

East Central North America 2001

【题意】:

输入n和m,n表示26个字母前n个字母,m表示有多少个关系,然后输入m个关系,判断是否这n个字母存在一个排序关系,如果存在输出在几个关系之后就输出几个关系之后就可以确定,比如第一个测试数据,前四个关系输入之后,就输出结果。后两个关系输入不用管,如果存在环那么就输出冲突,如果不能确定次序就输出不能确定。

【分析】:

【代码】:

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,n,x) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; int n,m,num,ok; vector<int> G[maxn];
vector<int> ans;
queue<int> q;
char s[10];
int inDeg[maxn], tmp[maxn]; int topSort()
{
while(!q.empty()) q.pop();
for(int i=0;i<n;i++) ans.clear();
ok=0;
memcpy(tmp,inDeg,sizeof(inDeg));
for(int i=0;i<n;i++) if(!inDeg[i]) q.push(i);
while(!q.empty())
{
if(q.size()>1) ok = 1; //q中只有始终1个元素,才能保证全序
int now = q.front();
q.pop();
ans.push_back(now);
for(int i=0; i<G[now].size(); i++)
{
int son = G[now][i];
if(--tmp[son] == 0) q.push(son);
}
}
if(ans.size() < n) return 0; //存在环
if(ok) return 1; //无法生成序列/不能确定次序
return 2; //ok
} int main()
{ while(scanf("%d%d",&n,&m)!=EOF,n,m)
{
int ok=0; //必须局部定义标志变量!
ms(inDeg,0);
ms(tmp,0);
for(int i=0;i<n;i++) G[i].clear();
for(int i=0;i<n;i++) ans.clear();
for(int i=1;i<=m;i++)
{
scanf("%s",s);
if(ok) continue;
int u = s[0] - 'A';
int v = s[2] - 'A';
G[u].push_back(v);
inDeg[v]++;
int z = topSort();
if(z==0)
{
printf("Inconsistency found after %d relations.\n",i);
ok=1;
}
if(z==2)
{
printf("Sorted sequence determined after %d relations: ",i);
for(int i=0;i<n;i++)
printf("%c",ans[i]+'A');
printf(".\n");
ok=1;
}
}
if(ok==0)
printf("Sorted sequence cannot be determined.\n");
}
return 0;
}
/*
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
*/

POJ 1094 Sorting It All Out【拓扑排序 / 比较字母大小】的更多相关文章

  1. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  2. poj 1094 Sorting It All Out (拓扑排序)

    http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  4. POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  5. poj 1094 Sorting It All Out_拓扑排序

    题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...

  6. POJ 1094 Sorting It All Out 拓扑排序 难度:0

    http://poj.org/problem?id=1094 #include <cstdio> #include <cstring> #include <vector& ...

  7. PKU 1094 Sorting It All Out(拓扑排序)

    题目大意:就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列. 是典型的拓扑排序,但输出格式上确有三种形式: 1.该字母序列有序,并依次输出: 2.判断该序列是否唯一: 3.该序列字母次序之间 ...

  8. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  9. [ACM] POJ 1094 Sorting It All Out (拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 92 ...

随机推荐

  1. [洛谷P3413]SAC#1 - 萌数

    题目大意:求$[l,r](0\leqslant l<r< 10^{1001})$中存在长度至少为$2$的回文串的数字数 题解:数位$DP$,发现如果有回文串,若长度为偶数,一定有两个相同的 ...

  2. MFC随机数

    void CMFCDemoDlg::OnClickedGetrand() { wchar_t str[]; //srand((unsigned)time(NULL)); int num = rand( ...

  3. noip 2011观光公交

    P1315 观光公交 95通过 244提交 题目提供者该用户不存在 标签贪心递推2011NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 风景迷人的小城Y 市,拥有n 个美 ...

  4. Codeforces Round #534 (Div. 2) D. Game with modulo(取余性质+二分)

    D. Game with modulo 题目链接:https://codeforces.com/contest/1104/problem/D 题意: 这题是一个交互题,首先一开始会有一个数a,你最终的 ...

  5. Array.slice(start,end)的用法

    start在start>=0,假设start=0,表示从数组的第一个元素开始截取,start=2,表示从数组的第二个元素开始截取,依次类推. 在start<0时,start=-1表示从倒数 ...

  6. Django随笔 01

    Django 视图 不处理用户输入,而仅仅决定要展现哪些数据给用户: Django 模板 仅仅决定如何展现Django视图指定的数据. dd http://blog.csdn.net/pipisorr ...

  7. grub ubuntu启动

    set root=(hd0,gpt10) 现在变为 gpt9 了 安装固态后.变成了 (hd1,gpt11) set prefix=(hd0,gpt10)/boot/grub insmod norma ...

  8. HDFS集中化缓存管理

    概述 HDFS中的集中化缓存管理是一个明确的缓存机制,它允许用户指定要缓存的HDFS路径.NameNode会和保存着所需快数据的所有DataNode通信,并指导他们把块数据缓存在off-heap缓存中 ...

  9. Ant Design 使用小结

    最近公司做了一个系统,因为页面涉及的表单交互非常多,如果使用之前的 Node + Express 的开发模式效率是非常低的,因此经过考虑,最后决定使用 Node + React 的开发模式,并且使用了 ...

  10. HDU5772 String problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission ...