Problem of Precision

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1375    Accepted Submission(s): 826

Problem Description
Input
The
first line of input gives the number of cases, T. T test cases follow,
each on a separate line. Each test case contains one positive integer n.
(1 <= n <= 10^9)
Output
For each input case, you should output the answer in one line.
Sample Input
3
1
2
5
Sample Output
9 97 841
【分析】

这个题目算是矩阵快速幂的比较难推的一个题目。题目要求 (sqrt(2)+sqrt(3))的 2^n并%1024,要求出值来并不难,构造矩阵即可,但是要mod1024就有问题了,小数不能直接mod,但是如果你取整之后再mod,结果绝逼出问题,因为浮点数的精度问题。

所以从斌牛的博客上看到如此推算,推算第一块不难,而且很容易求出Xn 和 Yn,但是问题又出来了,要是求出来后,直接用(int)(Xn+Yn*sqrt(6))%1024,又会出问题,还是浮点数取整问题,我一开始就这么算的,导致结果奇葩。看来在mod的时候有浮点数要格外注意,直接处理的话,不管怎么取整,都会出问题。

所以分割线下面的推算就避开了这个问题,这个确实好难想到,通过变换一下,得到最终的结果必定是2Xn-(0.101...)^n,因为最终mod是用不大于浮点数的最大整数在mod,所以最终结果就是2Xn-1.第二条确实好难想到!

题解转载于 http://www.cnblogs.com/kkrisen/p/3437710.html;

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
using namespace std;
typedef long long ll;
const ll N = ; ll f1,f2,k;
ll mod = ;
ll n; struct Fast_Matrax {
ll a[N][N];
Fast_Matrax() {
memset(a,,sizeof(a));
}
void init() {
for(int i=; i<N; i++)
for(int j=; j<N; j++)
a[i][j]=(i==j);
}
Fast_Matrax operator * (const Fast_Matrax &B)const {
Fast_Matrax C;
for(int i=; i<N; i++)
for(int k=; k<N; k++)
for(int j=; j<N; j++)
C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j]%mod+mod)%mod;
return C;
}
Fast_Matrax operator ^ (const ll &t)const {
Fast_Matrax A=(*this),res;
res.init();
ll p=t;
while(p) {
if(p&)res=res*A;
A=A*A;
p>>=;
}
return res;
}
} ans,tmp,x;
int main() {
x.a[][]=;x.a[][]=;
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
if(n<=){
puts("");
}
else {
tmp.a[][]=;tmp.a[][]=;
tmp.a[][]=;tmp.a[][]=;
ans=(tmp^(n-))*x;
printf("%lld\n",(*ans.a[][]-)%mod);
}
}
return ;
}

HDU 2256 Problem of Precision (矩阵快速幂)(推算)的更多相关文章

  1. HDU 2256 Problem of Precision (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 最重要的是构建递推式,下面的图是盗来的.貌似这种叫共轭数. #include <iostr ...

  2. HDU 2256 Problem of Precision(矩阵高速幂)

    题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...

  3. HDU 2256 Problem of Precision(矩阵)

    Problem of Precision [题目链接]Problem of Precision [题目类型]矩阵 &题解: 参考:点这里 这题做的好玄啊,最后要添加一项,之后约等于,但是有do ...

  4. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  5. HDU 2256 Problem of Precision 数论矩阵快速幂

    题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...

  6. HDU 2256 Problem of Precision( 矩阵快速幂 )

    链接:传送门 题意:求式子的值,并向下取整 思路: 然后使用矩阵快速幂进行求解 balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... ...

  7. HDU 2256Problem of Precision(矩阵快速幂)

    题意 求$(\sqrt{2} + \sqrt{3})^{2n} \pmod {1024}$ $n \leqslant 10^9$ Sol 看到题解的第一感受:这玩意儿也能矩阵快速幂??? 是的,它能q ...

  8. hdu 2256 Problem of Precision

    点击打开hdu 2256 思路: 矩阵快速幂 分析: 1 题目要求的是(sqrt(2)+sqrt(3))^2n %1024向下取整的值 3 这里很多人会直接认为结果等于(an+bn*sqrt(6))% ...

  9. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

随机推荐

  1. Mybatis缓存机制及mybatis的各个组成部分

    Mybatis 一级缓存: 基于PerpetualCache 的 HashMap本地缓存,其存储作用域为 Session,当 Session flush 或 close 之后,该Session中的所有 ...

  2. 关于label标签的作用

    label标签的定义和用法: <label> 标签为 input 元素定义标注(标记). label 元素不会向用户呈现任何特殊效果.不过,它为鼠标用户改进了可用性.如果您在 label ...

  3. 如何用JavaScript做一个可拖动的div层

    可拖动的层在Web设计中用处很多,比如在某些需要自定义风格布局的应用中,控件就需要拖动操作,下面介绍一个,希望可以满足你的需求,顺便学习一下可拖动的层是如何实现的. 下面是效果演示: 这个DIV可以移 ...

  4. cookie 是存储于访问者的计算机中的变量

    今天把javascript如何用来创建及存储cookie复习了一下,其中的一点体会拿出来和大家讨论,首先看一下基础知识: 什么是cookie cookie 是存储于访问者的计算机中的变量.每当同一台计 ...

  5. ViBe(Visual Background extractor)背景建模或前景检测

    ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网: ...

  6. java过滤器和监听器详解

    过滤器 1.Filter工作原理(执行流程) 当客户端发出Web资源的请求时,Web服务器根据应用程序配置文件设置的过滤规则进行检查,若客户请求满足过滤规则,则对客户请求/响应进行拦截,对请求头和请求 ...

  7. Python之日志操作(logging)

    import logging   1.自定义日志级别,日志格式,输出位置 logging.basicConfig( level=logging.DEBUG, format='%(asctime)s | ...

  8. Android4.4中WebView无法显示图片解决方案

    在Android4.4之前我们在使用WebView时为了提高加载速度我设置了(myWebView.getSettings().setBlockNetworkImage(true);//图片加载放在最后 ...

  9. httpFS访问

    编辑文件httpfs-env.sh 执行sbin/httpfs.sh 执行命令curl -i "http://192.168.1.213:14000/webhdfs/v1?user.name ...

  10. 51 Nod 1013 3的幂的和 矩阵链乘法||逆元+快速幂

    这道题我写了两种写法 一种利用逆元 a/b%mod=a*c%mod; (c是b的逆元)易得2的逆元就是5~~~04: 一种是矩阵快速幂 利用递推式得出结论 #include<cstdio> ...