luoguP4213 [模板]杜教筛
https://www.luogu.org/problemnew/show/P4213
同 bzoj3944
考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块里的莫比乌斯前缀和刚好用第二问来做
杜教筛的时候先线性筛出前 N 个数的莫比乌斯函数前缀和,其余的用 map 记忆化搜索,实测 N 取 3670000 最佳(其实我只测了3次)
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
template <typename _T>
inline void read(_T &f) {
f = 0; _T fu = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') fu = -1; c = getchar();}
while(c >= '0' && c <= '9') {f = (f << 3) + (f << 1) + (c & 15); c = getchar();}
f *= fu;
}
const int N = 3670000;
map <ll, ll> val;
int mu[N], pri[N], isp[N], s[N], len = 0;
int T, n;
void Mu() {
mu[1] = 1;
for(int i = 2; i <= N - 10; i++) {
if(!isp[i]) {pri[++len] = i; mu[i] = -1;}
for(int j = 1; j <= len && i * pri[j] <= (N - 10); j++) {
isp[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
mu[i * pri[j]] = -mu[i];
}
}
for(int i = 1; i <= N - 10; i++) s[i] = s[i - 1] + mu[i];
}
ll getmu(ll n) {
if(n <= N - 10) return (ll)s[n];
if(val.count(n)) return val[n];
ll ans = 0;
for(ll l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ans += (r - l + 1) * getmu(n / l);
}
val[n] = 1 - ans;
return val[n];
}
ll getphi(ll n) {
ll ans = 0;
for(ll l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans += (getmu(r) - getmu(l - 1)) * (n / l) * (n / l);
}
return (ans + 1) >> 1;
}
int main() {
read(T); Mu();
while(T--) {
read(n);
printf("%lld %lld\n", getphi(n), getmu(n));
}
return 0;
}
luoguP4213 [模板]杜教筛的更多相关文章
- [模板] 杜教筛 && bzoj3944-Sum
杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- luoguP4213 【模板】杜教筛(Sum)杜教筛
链接 luogu 思路 为了做hdu来学杜教筛. 杜教筛模板题. 卡常数,我加了register居然跑到不到800ms. 太深了. 代码 // luogu-judger-enable-o2 #incl ...
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
- Luogu 4213 【模板】杜教筛(Sum)
当作杜教筛的笔记吧. 杜教筛 要求一个积性函数$f(i)$的前缀和,现在这个东西并不是很好算,那么我们考虑让它卷上另外一个积性函数$g(i)$,使$(f * g)$的前缀和变得方便计算,然后再反推出这 ...
- [bzoj3944] sum [杜教筛模板]
题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...
- [模板][P3377]杜教筛
Description: 求 $ \sum_{i=1}^n \phi(i) ,\sum_{i=1}^n \mu(i)$ Hint: \(n<=10^{10}\) Solution: 考虑积性函 ...
- p4213 【模板】杜教筛(Sum)
传送门 分析 我们知道 $\varphi * 1 = id$ $\mu * 1 = e$ 杜教筛即可 代码 #include<iostream> #include<cstdio> ...
- P4213 【模板】杜教筛(Sum)
\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varph ...
随机推荐
- springboot成神之——拦截器
本文介绍spring boot拦截器 创建拦截器类LogInterceptor.java 创建拦截器类OldLoginInterceptor.java 拦截器配置类WebMvcConfig.java ...
- 微信小程序简单步骤记录
- Java微信公众平台开发(六)--微信开发中的token获取
转自:http://www.cuiyongzhi.com/post/44.html (一)token的介绍 引用:access_token是公众号的全局唯一票据,公众号调用各接口时都需使用access ...
- Mybatis系列(四)映射文件
转自:https://blog.csdn.net/chris_mao/article/details/48811507 Mybatis的真正强大,在于她对SQL的映射,这也是她吸引人的地方.实现相同的 ...
- React 常用面试题目与分析
调用 setState 之后发生了什么? 在代码中调用setState函数之后,React 会将传入的参数对象与组件当前的状态合并,然后触发所谓的调和过程(Reconciliation).经过调和过程 ...
- JAVA 用axis1 调用.NET的web service
1.去官网下载axis的jar包,我下的是1.4版本的 http://axis.apache.org/axis/java/releases.html 2.JAVA 代码: public void my ...
- linux SIGSEGV 信号捕捉,保证发生段错误后程序不崩溃
在Linux中编程的时候 有时候 try catch 可能满足不了我们的需求.因为碰到类似数组越界 ,非法内存访问之类的 ,这样的错误无法捕获.下面我们介绍一种使用捕获信号实现的异常 用来保证诸如段错 ...
- opencv3读取视频并保存为图片
#include <iostream> #include <vector> #include <opencv2/opencv.hpp> using namespac ...
- 1-在eclipse里面配置python(最详细)
最近有时间打算学下python,打算学当然是得先搞好开发工具,网上搜一波,发现许多ide,居然可以在eclipse下写python,由于最近一直在搞java,所以已经装了eclipse,所以打算就在e ...
- 面试题:jsp九大内置对象
我们常说的JSP有九大内置对象分别为:request.response.session.out.pagecontext.page.exception.application.config. 我们知道, ...