题面

传送门

题解

首先考虑一个贪心,我们把所有的人按\(a_i\)排个序,那么排序后的第一个人到\(k\),第二个人到\(k+1\),...,第\(i\)个人到\(k+i-1\),易证这样一定是最优的

然后发现这里有一个很重要的性质,\(a_i\)互不相同。那么就必定存在一个点\(mid\),在\(mid\)左边(包括\(mid\))的空格子和人一样多,右边(不包括\(mid\))也一样多

那么很明显,\(mid\)左边的所有人都需要往右跑,\(mid\)右边的所有人都需要往左跑

然后来康康答案啊……先看看\(mid\)左边,第一个人要跑\(k-a_1\),第二个人要跑\(k+1-a_2\),...,第\(mid-k+1\)个人要跑\(mid-a_{mid-k+1}\)……

这不就等价于\(\sum_{i=k}^{mid}i-\sum_{a_i\leq mid}a_i\)嘛!

也就是说,左边的答案就是\(k\)到\(mid\)的和,减去所有标号在\([l,r]\)区间内,且\(a_i\leq mid\)的\(a_i\)之和,一发主席树就搞定了。右边同理

顺便这个\(mid\)也可以在主席树上二分得到

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e5+5,M=(N<<5);
ll sum[M],Pre[N],ss,res;int sz[M],lc[M],rc[M],rt[N],a[N];
int n,m,l,r,k,cnt,zz,lim=2e6;
inline bool cmp(const int &x,const int &y){return a[x]<a[y];}
inline ll calc(R int l,R int r){return (1ll*r*(r+1)>>1)-(1ll*(l-1)*l>>1);}
void update(int &p,int q,int l,int r,int x){
p=++cnt,sz[p]=sz[q]+1,sum[p]=sum[q]+x;
if(l==r)return;int mid=(l+r)>>1;
x<=mid?(rc[p]=rc[q],update(lc[p],lc[q],l,mid,x)):
(lc[p]=lc[q],update(rc[p],rc[q],mid+1,r,x));
}
void query(int p,int q,int l,int r,int x){
if(!p||l==r)return zz+=sz[p]-sz[q],ss+=sum[p]-sum[q],void();
int mid=(l+r)>>1,res=mid-x+1;
zz+sz[lc[p]]-sz[lc[q]]<=res?query(lc[p],lc[q],l,mid,x):
(zz+=sz[lc[p]]-sz[lc[q]],ss+=sum[lc[p]]-sum[lc[q]],query(rc[p],rc[q],mid+1,r,x));
}
int main(){
// freopen("testdata.in","r",stdin);
// freopen("testdata.out","w",stdout);
n=read(),m=read();
fp(i,1,n)a[i]=read(),Pre[i]=Pre[i-1]+a[i],update(rt[i],rt[i-1],1,lim,a[i]);
while(m--){
l=read(),r=read(),k=read(),ss=zz=0;
query(rt[r],rt[l-1],1,lim,k);
res=calc(k,k+zz-1)-ss+Pre[r]-Pre[l-1]-ss-calc(k+zz,k+r-l);
print(res);
}
return Ot(),0;
}

洛谷P4559 [JSOI2018]列队(主席树)的更多相关文章

  1. 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】

    题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...

  2. 洛谷P2617 Dynamic Rankings (主席树)

    洛谷P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a ...

  3. 洛谷P3567 KUR-Couriers [POI2014] 主席树/莫队

    正解:主席树/莫队 解题报告: 传送门! 这题好像就是个主席树板子题的样子,,,? 毕竟,主席树的最基本的功能就是,维护一段区间内某个数字的个数 但是毕竟是刚get到主席树,然后之前做的一直是第k大, ...

  4. 洛谷P3567[POI2014]KUR-Couriers(主席树+二分)

    题意:给一个数列,每次询问一个区间内有没有一个数出现次数超过一半 题解: 最近比赛太多,都没时间切水题了,刚好日推了道主席树裸题,就写了一下 然后 WA80 WA80 WA0 WA90 WA80 ?? ...

  5. 洛谷P3567 [POI2014]KUR-Couriers 主席树

    挺裸的,没啥可讲的. 不带修改的主席树裸题 Code: #include<cstdio> #include<algorithm> using namespace std; co ...

  6. 洛谷$P3302$ 森林 $[SDOI2013]$ 主席树

    正解:主席树 解题报告: 传送门! 口胡一时爽代码火葬场 这题想法不难,,,但显然的是代码应该还挺难打的 但反正我也不放代码,就写下题解趴$QwQ$ 第一问就是个$Count\ on\ a\ tree ...

  7. 洛谷P4602 [CTSC2018]混合果汁(主席树)

    题目描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 nn 种果汁,编号为 0,1,\cdots,n-10,1,⋯,n−1 . ii 号果汁的美味度是 d_idi​ ,每升价格为 p_ipi ...

  8. 洛谷P2617 Dynamic Rankings 主席树 单点修改 区间查询第 K 大

    我们将线段树套在树状数组上,查询前预处理出所有要一起移动的节点编号,并在查询过程中一起将这些节点移到左右子树上. Code: #include<cstdio> #include<cs ...

  9. 洛谷4137 mex题解 主席树

    题目链接 虽然可以用离线算法水过去,但如果强制在线不就gg了. 所以要用在线算法. 首先,所有大于n的数其实可以忽略,因为mex的值不可能大于n 我们来设想一下,假设已经求出了从0到n中所有数在原序列 ...

随机推荐

  1. 「小程序JAVA实战」 小程序手写属于自己的第一个demo(六)

    转自:https://idig8.com/2018/08/09/xiaochengxu-chuji-06/ 自己尝试的写一个小demo,用到自定义样式,自定义底部导航,页面之间的跳转等小功能.官方文档 ...

  2. 在tomcat6.5+上配置虚拟主机

    一 准备(必须配置,否则不能解析域名到ip) 我们将配置两台虚拟主机,假设域名分别为 www.test1.com www.test2.com 为了测试方便,请在客户机的: Win2K://WINNT/ ...

  3. 【HDU5391】Zball in Tina Town

    [题目大意] 一个球初始体积为1,一天天变大,第一天变大1倍,第二天变大2倍,第n天变大n倍.问当第 n-1天的时候,体积变为多少.注意答案对n取模. [题解] 根据威尔逊定理:(n-1)! mod ...

  4. php 扩展开发

    Linux下用C开发PHP扩展 一.首先下载PHP源码包,假设源码包目录为:/software/php-5.2.13 #> cd /software/php-5.2.13/ext 二.假设我们要 ...

  5. Druid配置属性列表及含义

    前两天,在排查springBoot使用双数据源出现的运行一段时候出现了数据库连接断开的问题的时候,查了很多关于Druid数据库连接池配置的文章,虽然最后问题的原因不是属性配置的问题,也可以说是 属性配 ...

  6. mysql 错误总结 和FROM_UNIXTIME用法

    今天再倒入给数据库导入 .sql  文件的时候出现了一个错误.看错误码: You have an error in your SQL syntax; check the manual that cor ...

  7. php扩展开发1--添加函数

    目标:便携php扩展 要求实现 输出hello word 首先用的是php7.0.3   centos7.1或者centos6.+ 1.1 RPM安装PHP rpm -Uvh https://mirr ...

  8. 459. Repeated Substring Pattern 判断数组是否由重复单元构成

    [抄题]: Given a non-empty string check if it can be constructed by taking a substring of it and append ...

  9. 面试题:Java程序员最常用的20%技术 已看1

    首先常用api(String,StringBuffer/StringBuilder等) 1.集合类,线程类 2.Servlet(很少用纯粹的servlet写,但你要懂,因为很多框架都是基于servle ...

  10. Java设计模式(1)——简单工厂模式

    简单工厂模式属于类的创建型模式,又叫做静态工厂方法模式.通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类. 一.模式中包含的角色及其职责 1.工厂(Creator)角色 简单 ...