【BZOJ3624】【APIO2008】免费道路 [生成树][贪心]
免费道路
Time Limit: 2 Sec Memory Limit: 128 MB
[Submit][Status][Discuss]
Description

Input

Output

Sample Input
1 3 0
4 5 1
3 2 0
5 3 1
4 3 0
1 2 1
4 2 1
Sample Output
4 3 0
5 3 1
1 2 1
HINT
Main idea
一种0边,一种1边,求一棵最小生成树并且正好有K条0边,输出其中一种方案。
Solution
显然要搞一棵符合题目的生成树。
每次要加入0边或者1边,直接做肯定不可行,考虑有什么0边是一定要加入的。
只需要输出一种方案,所以我们先加入所有可加的1边,如果图不联通则加入可加入的0边,那么这几条0边在我们所求的方案中是一定需要加入的。
这时候判断一下,如果此时加入的0边数量>K,或者图还是无法联通的话则无解。然后处理完毕前半部分,考虑接下来如何实现。
因为我们要使得图为树并且正好有K条0边,运用贪心,想到了加入0边到K条位置(如果到不了K条则也无解),然后剩下的用1边来填。
验证一下这样做的可行性:由于我们在前半部分使得了可以成为一棵树,那么显然我们在后半部分中每加入一条0边,则在前半部分中一定有一条1边可以替换使得可行(因为前半部分是尽量加入1边)。每次连边判环运用Krusal即可。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=;
const int INF=; int n,m,k;
int Edge_k;
int fa[ONE];
int num;
int Choose[ONE];
int ans_num;
int the0; struct power
{
int x,y,v;
}a[ONE],Ans_edg[ONE]; int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
} void Un(int a,int b)
{
int a1=find(a);
int b1=find(b);
if(a1!=b1) fa[a1]=b1;
} int Add_set(int N,int v,int ci)
{
int kd=;
for(int i=;i<=m;i++)
{
if(kd>=N) break; if(a[i].v!=v) continue; int x=a[i].x,y=a[i].y;
if(find(x)!=find(y))
{
Un(x,y);
if(ci>=) Ans_edg[++ans_num]=a[i];
if(ci==)
{
Choose[++num]=i;
}
Edge_k++;
kd++;
if(ci==) the0++;
}
if(Edge_k==n-) break;
}
} int main()
{
n=get(); m=get(); k=get();
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=m;i++)
{
a[i].x=get(); a[i].y=get(); a[i].v=get();
}
Edge_k=; Add_set(INF,,);
Add_set(INF,,); if(Edge_k<n- || num>k)
{
printf("no solution\n");
return ;
} Edge_k=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=num;i++)
{
int x=Choose[i];
Un(a[x].x,a[x].y);
Edge_k++;
if(Edge_k==n-) break;
} Add_set(k-num,,);
if(the0!=k-num)
{
printf("no solution\n");
return ;
} Add_set(INF,,);
for(int i=;i<=ans_num;i++)
{
printf("%d %d %d\n",Ans_edg[i].x,Ans_edg[i].y,Ans_edg[i].v);
} }
【BZOJ3624】【APIO2008】免费道路 [生成树][贪心]的更多相关文章
- [BZOJ3624][Apio2008]免费道路
[BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...
- bzoj 3624: [Apio2008]免费道路 生成树的构造
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 111 Solved: 4 ...
- [APIO2008]免费道路(生成树)
新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可能保持所有道路免费.为此亟待制定一个新的 ...
- Bzoj 3624: [Apio2008]免费道路 (贪心+生成树)
Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output 3 2 0 4 3 0 5 3 1 1 2 1 这 ...
- BZOJ 3624: [Apio2008]免费道路 [生成树 并查集]
题意: 一张图0,1两种边,构造一个恰有k条0边的生成树 优先选择1边构造生成树,看看0边是否小于k 然后保留这些0边,补齐k条,再加1边一定能构成生成树 类似kruskal的证明 #include ...
- BZOJ3624: [Apio2008]免费道路(最小生成树)
题意 题目链接 Sol 首先答案一定是一棵树 这棵树上有一些0边是必须要选的,我们先把他们找出来,如果数量$\geqslant k$显然无解 再考虑继续往里面加0的边,判断能否加到k条即可 具体做法是 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- 题解 Luogu P3623 [APIO2008]免费道路
[APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...
- BZOJ 3624: [Apio2008]免费道路
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1201 Solved: ...
随机推荐
- 2016.01.04接触spring一年开始读spring源码
http://www.cnblogs.com/xing901022/p/4178963.html#_label0 遇到第一个问题The processing instruction target ma ...
- Laxcus大数据分布计算演示实例
Laxcus大数据管理系统提供了基于Diffuse/Converge分布算法的计算能力.算法的具体介绍详见<Laxcus:大数据处理系统>一文.本图展示了在集群环境下的随机数产生.排序.显 ...
- 洛谷P1189'SEARCH'
题目描述 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的移动路线的方向信息. 编写程 ...
- Flask 学习笔记(二):RESTful API
概括 URL:需要操作的对象,也就是资源 HTTP method:我要对该对象做什么(POST 增.DELETE 删.GET 查.PUT 和 PATCH 改) HTTP status code:操作的 ...
- POJ 2182 / HDU 2711 Lost Cows(平衡树)
Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular di ...
- 最短路径——Bellman-Ford算法
一.相关定义 最短路径:求源点到某特定点的最短距离 特点:Bellman-Ford算法主要是针对有负权值的图,来判断该图中是否有负权回路或者存在最短路径的点 局限性:算法效率不高,不如SPFA算法 时 ...
- NO6——KMP
int next[N]; char str1[M],str2[N]; //str1 长,str2 短 //len1,len2,对应str1,str2的长 void get_next(int len2) ...
- gradle在build之后执行任务
在打包后一般会有copy jar文件的需求. 先在build.gradle文件中定义你的task: task myCopy{ println "some copy code..." ...
- Football Games(思维题)
Problem Description A mysterious country will hold a football world championships---Abnormal Cup, at ...
- vue-cli项目里npm安装font-awesome
第一步:进入到项目目录里,运行 cnpm i font-awesome -s 第二步:在main.js里面 import 'font-awesome/css/font-awesome.min.css'