免费道路

Time Limit: 2 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  

Input

  

Output

  

Sample Input

  5 7 2
  1 3 0
  4 5 1
  3 2 0
  5 3 1
  4 3 0
  1 2 1
  4 2 1

Sample Output

  3 2 0
  4 3 0
  5 3 1
  1 2 1

HINT

  1<=n<=20000,1<=m<=100000,0<=k<=n-1

Main idea

  一种0边,一种1边,求一棵最小生成树并且正好有K条0边,输出其中一种方案。

Solution

  显然要搞一棵符合题目的生成树。

  每次要加入0边或者1边,直接做肯定不可行,考虑有什么0边是一定要加入的。

  只需要输出一种方案,所以我们先加入所有可加的1边,如果图不联通则加入可加入的0边,那么这几条0边在我们所求的方案中是一定需要加入的。

  这时候判断一下,如果此时加入的0边数量>K,或者图还是无法联通的话则无解。然后处理完毕前半部分,考虑接下来如何实现。

  因为我们要使得图为树并且正好有K条0边,运用贪心,想到了加入0边到K条位置(如果到不了K条则也无解),然后剩下的用1边来填。

  验证一下这样做的可行性:由于我们在前半部分使得了可以成为一棵树,那么显然我们在后半部分中每加入一条0边,则在前半部分中一定有一条1边可以替换使得可行(因为前半部分是尽量加入1边)。每次连边判环运用Krusal即可。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=;
const int INF=; int n,m,k;
int Edge_k;
int fa[ONE];
int num;
int Choose[ONE];
int ans_num;
int the0; struct power
{
int x,y,v;
}a[ONE],Ans_edg[ONE]; int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
} void Un(int a,int b)
{
int a1=find(a);
int b1=find(b);
if(a1!=b1) fa[a1]=b1;
} int Add_set(int N,int v,int ci)
{
int kd=;
for(int i=;i<=m;i++)
{
if(kd>=N) break; if(a[i].v!=v) continue; int x=a[i].x,y=a[i].y;
if(find(x)!=find(y))
{
Un(x,y);
if(ci>=) Ans_edg[++ans_num]=a[i];
if(ci==)
{
Choose[++num]=i;
}
Edge_k++;
kd++;
if(ci==) the0++;
}
if(Edge_k==n-) break;
}
} int main()
{
n=get(); m=get(); k=get();
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=m;i++)
{
a[i].x=get(); a[i].y=get(); a[i].v=get();
}
Edge_k=; Add_set(INF,,);
Add_set(INF,,); if(Edge_k<n- || num>k)
{
printf("no solution\n");
return ;
} Edge_k=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=num;i++)
{
int x=Choose[i];
Un(a[x].x,a[x].y);
Edge_k++;
if(Edge_k==n-) break;
} Add_set(k-num,,);
if(the0!=k-num)
{
printf("no solution\n");
return ;
} Add_set(INF,,);
for(int i=;i<=ans_num;i++)
{
printf("%d %d %d\n",Ans_edg[i].x,Ans_edg[i].y,Ans_edg[i].v);
} }

【BZOJ3624】【APIO2008】免费道路 [生成树][贪心]的更多相关文章

  1. [BZOJ3624][Apio2008]免费道路

    [BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...

  2. bzoj 3624: [Apio2008]免费道路 生成树的构造

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 111  Solved: 4 ...

  3. [APIO2008]免费道路(生成树)

    新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可能保持所有道路免费.为此亟待制定一个新的 ...

  4. Bzoj 3624: [Apio2008]免费道路 (贪心+生成树)

    Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output 3 2 0 4 3 0 5 3 1 1 2 1 这 ...

  5. BZOJ 3624: [Apio2008]免费道路 [生成树 并查集]

    题意: 一张图0,1两种边,构造一个恰有k条0边的生成树 优先选择1边构造生成树,看看0边是否小于k 然后保留这些0边,补齐k条,再加1边一定能构成生成树 类似kruskal的证明 #include ...

  6. BZOJ3624: [Apio2008]免费道路(最小生成树)

    题意 题目链接 Sol 首先答案一定是一棵树 这棵树上有一些0边是必须要选的,我们先把他们找出来,如果数量$\geqslant k$显然无解 再考虑继续往里面加0的边,判断能否加到k条即可 具体做法是 ...

  7. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  8. 题解 Luogu P3623 [APIO2008]免费道路

    [APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...

  9. BZOJ 3624: [Apio2008]免费道路

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1201  Solved:  ...

随机推荐

  1. 人工智能,图片识别,与GUI编程

    GUI编程: https://sourceforge.net/projects/pyqt/ 百度aip图片识别 https://pypi.python.org/pypi/baidu-aip

  2. 在编程的时候,NotePad++ 中闪烁的光标突然有竖着闪烁的编程蓝色下划线闪烁的--小技巧告诉你-费元星

    当在写代码时出现的光标闪烁(横线闪烁) 在键盘上找 Insert ,按这个Insert就可以把横向闪烁光标( _ )修改成竖向闪烁光标样式( | ),横向光标会在你写代码的时候修改前面的代码,把光标移 ...

  3. Android应用AsyncTask处理机制详解及源码分析

    1 背景 Android异步处理机制一直都是Android的一个核心,也是应用工程师面试的一个知识点.前面我们分析了Handler异步机制原理(不了解的可以阅读我的<Android异步消息处理机 ...

  4. 【多校联合】(HDU6045)Is Derek lying?

    分析 之前没有想到题目解法,看了题解才会,记录一下思考过程. 这条题目的实质是,在满足合法的情况下,有没有a和d的可行解?也就是说,不要仅仅附在表面的思考逻辑条件,而是要思考实际的数学表达. 转化为数 ...

  5. PHP将两个数组相加

    $arr_a=[1=>1,2=>2,3=>3];$arr_b=[1=>'a',4=>4];print_r($arr_a+$arr_b);返回结果:Array ( [1] ...

  6. 实战小项目之基于yolo的目标检测web api实现

    上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解.互联网最开始的构架多是cs构架,浏览器兴起以后,变成了 ...

  7. Pro Git - 笔记3

    Git Branching Branches in a Nutshell Branches in a Nutshell let’s assume that you have a directory c ...

  8. JavaScript 面向对象 原型(prototype) 继承

    1.对象的概念:无需属性的集合,属性可以为数值,对象或函数,ECMAscript中没有类的概念,这点是javascript与其他面向对象(OO)语言不同的地方. //创建一个自定义对象 var per ...

  9. laydate日期控件

    <!-- laydate 日期时间控件 下载地址 http://www.layui.com/laydate/ 这里用到版本为 layDate-v5.0.2 下载后将 laydate 文件夹放到项 ...

  10. input属性 disabled与readonly的区别

    从效果上看 源码 <!DOCTYPE html> <html> <head lang="en"> <meta charset=" ...