POJ 2299 【树状数组 离散化】
Description
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
Output
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
大概题意:
给一串长度为N的序列, 问要经过多少次调换才能形成一个升序。
大致思路:
记录元素的大小及坐标, 因为要形成升序,前面大的元素要交换到后面,所以就是转换成了求一段序列的逆序数。
这道题很容易想到冒泡排序法暴力,复杂度O(N^2) ,但这道题看到有求逆序数,优先用树状数组或线段树,如果用树状数组,效率会快很多很多。
之前写过一篇用树状数组求逆序数的方法,可以参考一下:链接
如果用树状数组,那么问题就来了,a[ i ] 的范围【0, 999999999】, 数据范围有点大,而且通过样例可以发现, 数据也不是连续的,所以按数据范围开数组这个太恶心了,我们不妨做一下离散化的处理,之后求逆序数就可以交给树状数组啦。
1、为什么要离散化?
正如前面所说的a[ i ]的范围最大可以去到 999,999,999. 如果给一组的一组数据是 999999999, 1, 0, 5,3 . 就5个数, 但树状数组的范围就要开到【0, 999999999】, 造成了大量的内存浪费,而且题目也不允许,这笔买卖可不划算。所以我们要用把这五个数离散化一下。
2、如何离散化?
记录他们的下标,用下标来搞事情。
既然要同时记录下标和数值,我们可以考虑两种映射
①map, 效率有点低
②定义一个结构体 v用于记录数值(排序用), no用于记录下标。
struct node
{
int v, no;
};
输入序列之后,按升序排序,这样我们就可以得到一个按元素升序排好序表示每个元素出现的顺序的序列。
举个栗子: 999999999, 1, 0, 5, 3
| t.v | 9...9 | 1 | 0 | 5 | 3 |
| t.no | 1 | 2 | 3 | 4 | 5 |
| t.v (排序后) | 0 | 1 | 3 | 5 | 9...9 |
| t.no(排序后) | 3 | 2 | 5 | 4 | 1 |
很显然,我们就可以发现排序后的 t.no 序列的逆序数就是需要交换的次数,例如9...9 的 下表为 1 ,它前面 t.no 比它大的数有四个, 说明在原序列(未排序)中 9...9的后面(因为下标也代表出现的顺序,越大越靠后)比 9...9 小(因为排序)的有四个。所以问题到这里就可以交给树状数组去解决啦!
AC code:
///poj 2299 树状数组 离散化 求逆序数
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define INF ox3f3f3f3f
using namespace std; const int MAXN = ; struct node
{
int v;
int no;
}c[MAXN]; int aa[MAXN];
int N; bool cmp(struct node a, struct node b)
{
return a.v < b.v;
} int lowbit(int i)
{
return i&(-i);
} void add(int i, int value)
{
while(i <= N)
{
aa[i]+=value;
i+=lowbit(i);
}
} int sum(int i)
{
int res = ;
while(i > )
{
res+=aa[i];
i-=lowbit(i);
}
return res;
} int main()
{
while(scanf("%d", &N) != EOF && N)
{
memset(aa, , sizeof(aa));
for(int i = ; i <= N; i++)
{
scanf("%d", &c[i].v);
c[i].no = i;
}
sort(c+, c+N+, cmp);
long long int ans = ;
for(int i = ; i <= N; i++)
{
add(c[i].no, );
ans += i-sum(c[i].no);
}
printf("%lld\n", ans);
}
return ;
}
当然如果这样子你还是没办法理解,那我们可以在进一步转换,通过数组 aa[ ], 还原回原本的序列结合冒泡排序的思想进行求解
| t.v | 0 | 1 | 3 | 5 | 9...9 |
| t.no | 3 | 2 | 5 | 4 | 1 |
| aa[ t.no ] | 1 | 2 | 3 | 4 | 5 |
| aa[1] ~ aa[5] | 5 | 2 | 1 | 4 | 3 |
很明显,这里的aa[ i ] 表示的是第 i 个元素在整个序列中是第 aa[ i ] 大。那么结合冒泡排序的思想,这里的逆序数表示的是当前元素转到指定位置需要swap多少次
| i | t[1] | t[2] | t[3] | t[4] | t[5] | i - sum( aa[i] ) |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 - 1 = 0 |
| 2 | 0 | 1 | 0 | 0 | 1 | 2 - 1 = 1 |
| 3 | 1 | 1 | 0 | 0 | 1 | 3 - 1 = 2 |
| 4 | 1 | 1 | 0 | 1 | 1 | 4 - 3 = 1 |
| 5 | 1 | 1 | 1 | 1 | 1 | 5 - 3 = 2 |
例如, 按照冒泡排序法,第二个数 1 要跟 9... 9 交换位置一次, 序列变成 1,9...9, 0, 5, 3
第三个数 0 要跟前面两个数交换位置,所以交换次数为2, 序列变成 0,1,9...9,5,3
第四个数 5 要跟前面的 9...9 交换位置,交换次数为1,序列 0,1,5,9...9, 3
第五个数 3 要跟前面两个数交换位置,交换位置为2, 序列 0,1,3,5,9...9
答案就是:0+1+2+1+2 = 6;
AC code:
///poj 2299 树状数组 离散化 求逆序数
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define INF ox3f3f3f3f
using namespace std; const int MAXN = ; struct node
{
int v;
int no;
}c[MAXN]; int aa[MAXN];
int t[MAXN];
int N; bool cmp(struct node a, struct node b)
{
return a.v < b.v;
} int lowbit(int i)
{
return i&(-i);
} void add(int i, int value)
{
while(i <= N)
{
t[i]+=value;
i+=lowbit(i);
}
} int sum(int i)
{
int res = ;
while(i > )
{
res+=t[i];
i-=lowbit(i);
}
return res;
} int main()
{
while(scanf("%d", &N) != EOF && N)
{
memset(t, , sizeof(t));
for(int i = ; i <= N; i++)
{
scanf("%d", &c[i].v);
c[i].no = i;
}
sort(c+, c+N+, cmp); for(int i = ; i <= N; i++)
aa[c[i].no] = i; long long int ans = ;
for(int i = ; i <= N; i++)
{
add(aa[i], );
ans += i-sum(aa[i]);
}
printf("%lld\n", ans);
}
return ;
}
POJ 2299 【树状数组 离散化】的更多相关文章
- POJ 2299 树状数组+离散化求逆序对
给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...
- Ultra-QuickSort (POJ 2299)树状数组+离散化
题目链接 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm ...
- poj 2299 树状数组求逆序数+离散化
http://poj.org/problem?id=2299 最初做离散化的时候没太确定可是写完发现对的---由于后缀数组学的时候,,这样的思维习惯了吧 1.初始化as[i]=i:对as数组依照num ...
- poj 2299 树状数组求逆序对数+离散化
Ultra-QuickSort Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 54883 Accepted: 20184 ...
- POJ 2299树状数组求逆序对
求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...
- Ultra-QuickSort POJ - 2299 树状数组求逆序对
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a seque ...
- hdu4605 树状数组+离散化+dfs
Magic Ball Game Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- BZOJ_5055_膜法师_树状数组+离散化
BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...
- POJ 2299 Ultra-QuickSort(树状数组+离散化)
http://poj.org/problem?id=2299 题意:给出一组数,求逆序对. 思路: 这道题可以用树状数组解决,但是在此之前,需要对数据进行一下预处理. 这道题目的数据可以大到999,9 ...
随机推荐
- mysql - VARCHAR与VHAR的区别
一, 基本介绍 char 和 varchar 两类型类似, 用来存储字符串,不同之处来自于他们的保存和检索的差别, char 属于固定的长度字符类型, 而varchar 属于可变长度的字符类型 值 C ...
- 阿里云Tomcat运行shutdown.sh命令关闭时遇到的问题
1.安装完成jdk之后,然后安装tomcat. tomcat安装成功后,进入tomcat的安装目录,找到bin所在的目录. 使用./startup.sh,启动tomcat; 使用./shutdown. ...
- nginx配置多域名
http{ # 第一个虚拟主机 server { listen 80; server_name aaa.domain.com; #access_log logs/host.access.log mai ...
- java使用POI进行 Excel文件解析
package com.timevale.esign.vip.util; import java.io.File; import java.io.FileInputStream; import jav ...
- 一个C#后台调用接口的例子
string url = ConfigurationSettings.AppSettings["resurl"].ToString(); var wc = new WebClien ...
- SpringSecurity 3.2入门(8)自定义权限控制数据库设计
; -- ---------------------------- -- Table structure for t_system_authority_info -- ---------------- ...
- vsCode代码缩略图
vsCode配置代码缩略图: 文件--首选项--设置 搜索 minimap true 打开 false 关闭
- 【学习笔记】Java实用类:枚举(Enum)
Java API(Java Application Programming Interface)Java应用程序编程接口... 实用类:Java API提供了几个常用包: 1.java.lang:编写 ...
- 如何把php项目部署到阿里云服务器window server2012__含公网ip访问时jquery/ajax失效解决办法
记一次蛋疼的折腾. 弄了一晚上最后发觉是360浏览器的问题,换个浏览器就好了.垃圾360用什么IE7文档模式.导致界面和功能失效. 建议大家测试的时候用firefox或者chrome. 项目部署到服务 ...
- Html5的map在实际使用中遇到的问题及解决方案
前言:百度了一下html map,嗯嗯,介绍的挺详细的,如果是初学者,直接看他们的教程,挺好的,就不用我再多说了. 不过我发现一个问题,就是都是介绍map有什么属性怎么用的,这明显就是照搬文档自己再改 ...