剑指offer--5.变态跳台阶
题目描述
class Solution {
public:
int jumpFloorII(int number) {
return pow(, number-);
}
};
剑指offer--5.变态跳台阶的更多相关文章
- [剑指Offer]2.变态跳台阶
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...
- Go语言实现:【剑指offer】变态跳台阶
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...
- 剑指OFFER之变态跳台阶(九度OJ1389)
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...
- 剑指offer:变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...
- 剑指Offer 9. 变态跳台阶 (递归)
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...
- 牛客网-《剑指offer》-变态跳台阶
C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析 ...
- 【剑指offer】变态跳台阶
一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...
- 剑指offer 09变态跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...
- [剑指Offer] 9.变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必 ...
- 《剑指offer》变态跳台阶
一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...
随机推荐
- Vue-router2.0学习笔记(转)
转:https://segmentfault.com/a/1190000007825106 Vue.js的一大特色就是构建单页面应用十分方便,既然要方便构建单页面应用那么自然少不了路由,vue-rou ...
- Webpack,Browserify和Gulp三者之间到底是怎样的关系
转:https://zhidao.baidu.com/question/1799220342210982227.html怎么解释呢?因为 Gulp 和 browserify / webpack 不是一 ...
- mysql数据库补充知识6 完整性约束
一 介绍 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性主要分为: PRIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN KEY ...
- django内容总结
一.django请求的生命周期 1.django请求生命周期如图所示 2.django本身没有socket,客户端请求先到达wsgi然后再提交给django,而wsgi的本质就是个socket程序 注 ...
- oracle数据向历史表数据迁移————procedure
create or replace procedure remove_refund_his_pro isbegin declare cursor refund_query_cur is select ...
- git操作整理
昨天手残 然后在GitHub for windows 上点了revert 然后就给重置了 更手残的是又给同步了 . 但是 GitHub 会保留之前的版本 . 只要删掉本次修改就可. 解决方案: g ...
- Linux软件包管理 RMP包管理
概述 RPM 包的命名一般都会遵守统一的命名规则,例如: httpd-2.2.15-15.el6.centos.1.i686.rpm 其中的各项代表的含义如下: httpd:软件包名. 2.2.15: ...
- verilog中一些基本的门电路如pmos和nmos等
最近在分析波形的时候,发现某个PAD模型的行为与想象的不一致,就进入stdcell里面看了下,主要是pmos和nmos相关的东西,暂列如下: 开关级基元14种 是实际的MOS关的抽象表示,分电阻型(前 ...
- 最长公共子序列的C++实现---附二维指针的使用方法
想了挺久到底第一篇在这儿的博客写什么好,刚好这两天又一次看到动态规划的LCS算法觉得还是有点意思的,就拿来写了写,第一篇博客就发它吧. #include<iostream> #includ ...
- Golang 连接Kafka
Kafka介绍 Kafka是Apache软件基金会开发的一个开源流处理平台,由Java和Scala编写:Kafka是一种高吞吐.分布式.基于订阅发布的消息系统. Kafka名称解释 Producer: ...