1、寻找数组中的第二大数

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks; namespace ConsoleApplication2
{
class Program
{
static void Main(string[] args)
{
int[] ar = { , , , , , ,,,};
try
{
Console.WriteLine(get2rdMax(ar).ToString());
}
catch (Exception exc)
{
Console.WriteLine(exc.Message);
}
Console.ReadKey();
}
private static int get2rdMax(int[] ar)
{
int max = ar[], s_max = ar[];
for (int i = ; i < ar.Length; i++)
{
if (ar[i] > s_max) //后面的跟第二大先比,if大,赋值给第二大,
{
s_max = ar[i];
//第二大再跟最大比,if还大,第二大跟最大交换
if (s_max > max) //交换。一次最终:max>s_max>ar[i]
{
int temp;
temp = max;
max = s_max ;
s_max = temp ;
}
}
}
if (max == s_max) //至少有两个一样的最大值
throw new Exception("no second max!");
else
return s_max;
}
}
}

2、寻找数组中的第K大数

求一个数组中第k大的数,我第一印象是冒泡,因为只要冒泡k趟即可,第一趟冒泡第一大,第二次冒泡第二大,第k次冒泡第k大,时间复杂度为O(kn),n为数组长度。但是我们都知道快速排序是对冒泡的改进,降低冒泡的递归深度,使时间复杂度降低到O(nlgn),为什么不用快排呢?那么快排的时间复杂度又是多少呢?

因为快排每次将数组划分为两组加一个枢纽元素,每一趟划分你只需要将k与枢纽元素的下标进行比较,如果比枢纽元素下标大就从右边的子数组中找,如果比枢纽元素下标小从左边的子数组中找,如果一样则就是枢纽元素,找到,如果需要从左边或者右边的子数组中再查找的话,只需要递归一边查找即可,无需像快排一样两边都需要递归,所以复杂度必然降低。

最差情况如下:假设快排每次都平均划分,但是都不在枢纽元素上找到第k大

第一趟快排没找到,时间复杂度为O(n),第二趟也没找到,时间复杂度为O(n/2),。。。。。,第k趟找到,时间复杂度为O(n/2k),所以总的时间复杂度为

O(n(1+1/2+....+1/2k))=O(n),明显比冒泡快,虽然递归深度是一样的,但是每一趟时间复杂度降低。

快排求第k大数代码如下:(C#版)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks; namespace 求数组第K大的数
{
class Program
{
static void Main(string[] args)
{
//int[] ar = { 1, 2, 3, 4, 5, 6 ,17,28,39,7,8,9,10};
//Array.Sort(ar); //此方法实现的就是快速排序。。
//Console.WriteLine("数组中第12大的数是:"+ar[12-1]);
//Console.ReadLine( ); int[] ar = { , , , , , , , , , , , , };
Console.WriteLine("表中有元素" + ar.Length + "个,下标是0—" + (ar.Length - ));
for (int i = ; i < ar.Length; i++)
{
Console.Write(ar[i] + "-");
} QuickSort(ar, , ar.Length - ); //快速排序
Console.WriteLine();
for (int i = ar.Length - ; i >= ; i--) //从大到小排
{
Console.Write(ar[i] + "-");
} Console.WriteLine("输入你想找的第K大数(正整数):");
string K = Console.ReadLine();
int k = Convert.ToInt32(K);
Console.WriteLine(ar[ar.Length - k]);
Console.ReadLine();
} public static void QuickSort(int[] a, int low, int high)
{
int i = low;
int j = high;
int tmp = a[low]; //分界点
while (low < high)
{
while ((low < high) && (a[high] >= tmp)) //后边 比tmp大的 不动
{
--high;
}
a[low] = a[high]; //将 比tmp小的放在前面,low位置 while ((low < high) && (a[low] <= tmp)) //前面 比tmp小的 不动
{
++low;
}
a[high] = a[low]; //将 比tmp大的放在后面,high位置
//直到此时 low=high
}
a[high] = a[low] = tmp; // 此时low=high ,就完成了以tmp值来分界 //分别对前后两部分来 快速排序
if (i < low - ) //对tmp 前面的数(0到low-1) 递归调用,,此时【low】==tmp,low=high
{
QuickSort(a, i, low - );
}
if (low + < j) //对tmp 后面的数(low+1到j) 递归调用,,此时【low】==tmp,low=high
{
QuickSort(a, low + , j);
}
}
}
}

寻找数组中第K大数的更多相关文章

  1. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  2. 寻找数组中第K频繁的元素

    问题是:给你一个数组,求解出现次数第K多的元素.当然leetcode上的要求是算法复杂度不能大于O(N*logN). 首先这个问题我先是在leetcode上看到,当时想了两种做法,做到一半都觉得不是很 ...

  3. 寻找数组中第K大的数

    给定一个数组A,要求找到数组A中第K大的数字.对于这个问题,解决方案有不少,此处我只给出三种: 方法1: 对数组A进行排序,然后遍历一遍就可以找到第K大的数字.该方法的时间复杂度为O(N*logN) ...

  4. 寻找数组中的第K大的元素,多种解法以及分析

    遇到了一个很简单而有意思的问题,可以看出不同的算法策略对这个问题求解的优化过程.问题:寻找数组中的第K大的元素. 最简单的想法是直接进行排序,算法复杂度是O(N*logN).这么做很明显比较低效率,因 ...

  5. 前端算法题:找出数组中第k大的数字出现多少次

    题目:给定一个一维数组,如[1,2,4,4,3,5],找出数组中第k大的数字出现多少次. 例如:第2大的数是4,出现2次,最后输出 4,2 function getNum(arr, k){ // 数组 ...

  6. 查找数组中第k大的数

    问题:  查找出一给定数组中第k大的数.例如[3,2,7,1,8,9,6,5,4],第1大的数是9,第2大的数是8-- 思考:1. 直接从大到小排序,排好序后,第k大的数就是arr[k-1]. 2. ...

  7. [LeetCode] Kth Largest Element in an Array 数组中第k大的数字

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

  8. 数组中第K小的数字(Google面试题)

    http://ac.jobdu.com/problem.php?pid=1534 题目1534:数组中第K小的数字 时间限制:2 秒 内存限制:128 兆 特殊判题:否 提交:1120 解决:208 ...

  9. #7 找出数组中第k小的数

    「HW面试题」 [题目] 给定一个整数数组,如何快速地求出该数组中第k小的数.假如数组为[4,0,1,0,2,3],那么第三小的元素是1 [题目分析] 这道题涉及整数列表排序问题,直接使用sort方法 ...

随机推荐

  1. Objective-C系列总结之基础知识

    //第一个程序示例 #import <Foundation/Foundation.h> int main(int argc,const char * argv[]) { @autorele ...

  2. Linux的压缩命令(tar,gzip,zip)

    打包和压缩.打包是指将一大堆文件或目录变成一个总的文件:压缩则是将一个大的文件通过一些压缩算法变成一个小文件. 这源于Linux中很多压缩程序只能针对一个文件进行压缩,这样当你想要压缩一大堆文件时,你 ...

  3. Sagan

    来自Sagan官网:https://quadrantsec.com/services_technology/product_technology/ Sagan是一个多线程的,实时的安全信息事件管理分析 ...

  4. Linux下的文件查找命令——find

    Linux下几个常见的文件查找命令: which       查看可执行文件的位置 whereis    寻找特定文件,查看文件的位置 locate       配合数据库查看文件位置 find    ...

  5. PHP 面向对象及Mediawiki 框架分析(一)

    此文是一JAVA哥大神写的,虽然他不懂PHP.我这人PHP半桶水,面向对象更是半桶水都没有,此文原本是为了让我理解MediaWiki的运行机制的,愣是用他的JAVA的面向对象知识,对Mediawiki ...

  6. K8s 日常操作

    1.获取所有Pods kubectl get pods --namespace=default 2.获取所有Deployments kubectl get deployments --namespac ...

  7. Mybatis-config.xml配置文件详解

    1.官方给出的案列: 注意:这些配置在文件中的顺序非常重要!必须严格按照上图中出现的顺序定义 2.properties属性 该属性主要作用就是引入外部的properties是文件,文件格式为xxx=x ...

  8. sg函数的应用

    刚刚接触到sg函数突然感觉到原来可以这么好用,sg函数应该算是博弈论中比较经典的东西了.下面来说说sg函数: 从网上搜集资料终于能看懂了下面解释来自http://www.cnblogs.com/cj6 ...

  9. cdq分治入门and持续学习orz

    感觉cdq分治是一个很有趣的算法 能将很多需要套数据结构的题通过离线来做 目前的一些微小的理解 在一般情况下 就像求三维偏序xyz 就可以先对x排序 然后分治 1 cdq_x(L,M) ; 2 提取出 ...

  10. JavaScript -- 操作input CheckBox 全选框

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...