POJ 2182 Lost Cows (求序列第k大)
题解
二分+树状数组
显然最和一个数的值就是rank
那么其它数有什么规律?
从后往前匹配rank,我们可以发现第i个数的rank为还没有匹配的rank第(a[i]+1)大的数
这可以用 树状数组+二分 来求
一个数被选是0, 否则为1
显然sum(i) 表示第i个数前面有多少没被选的
二分找, 最小的i 使得 sum(i) == K
Code
#include<cstdio>
#define LL long long
#define RG register
using namespace std;
inline int gi() {
RG int x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x : x;
}
const int N = 80010;
int a[N], t[N], n;
#define lowbit(x) (x&(-x))
void add(int x, int k) {
while (x <= n)
t[x] += k, x += lowbit(x);
return ;
}
inline int sum(int x) {
int s = 0;
while (x) s += t[x], x -= lowbit(x);
return s;
}
int rank[N];
int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 2; i <= n; i++) a[i] = gi();
for (int i = 1; i <= n; i++)
add(i, 1);
for (int i = n; i; i--) {
int l = 1, r = n;
while (l <= r) {
int mid = (l + r) >> 1;
if (sum(mid) >= a[i]+1)
r = mid-1;
else l = mid+1;
}
rank[i] = r+1;
add(r+1, -1);
}
for (int i = 1; i <= n; i++)
printf("%d\n", rank[i]);
return 0;
}
POJ 2182 Lost Cows (求序列第k大)的更多相关文章
- POJ 2104 K-th Number ( 求取区间 K 大值 || 主席树 || 离线线段树)
题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用 ...
- 线段树/树状数组 POJ 2182 Lost Cows
题目传送门 题意:n头牛,1~n的id给它们乱序编号,已知每头牛前面有多少头牛的编号是比它小的,求原来乱序的编号 分析:从后往前考虑,最后一头牛a[i] = 0,那么它的编号为第a[i] + 1编号: ...
- POJ2761---Feed the dogs (Treap求区间第k大)
题意 就是求区间第k大,区间 不互相包含. 尝试用treap解决一下 第k大的问题. #include <set> #include <map> #include <cm ...
- poj 2182 Lost Cows(段树精英赛的冠军)
主题链接:http://poj.org/problem? id=2182 Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- POJ 2182 Lost Cows 【树状数组+二分】
题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- poj2182(线段树求序列第k小)
题目链接:https://vjudge.net/problem/POJ-2182 题意:有n头牛,从1..n编号,乱序排成一列,给出第2..n个牛其前面有多少比它编号小的个数,记为a[i],求该序列的 ...
- POJ 2388 Who's in the Middle (快速选择算法:O(N)求数列第K大)
[题意]求数列中间项. ---这里可以扩展到数列第K项. 第一次做的时候直接排序水过了= =--这一次回头来学O(N)的快速选择算法. 快速选择算法基于快速排序的过程,每个阶段我们选择一个数为基准,并 ...
- 【POJ】【2104】区间第K大
可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可 ...
- HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)
题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小 找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和 区间中位数可以使用划分树,然后在其中记录:每层 ...
随机推荐
- 在Build Path中包含其他工程
------------siwuxie095 在 TestBuildPath 的 Build Path 中包含 SupportProje ...
- 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布
1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...
- Flask框架 之 wtforms
简介 WTForms是一个支持多个web框架的form组件,主要用于对用户请求数据进行验证. 作用 生成HTML标签 form表单验证 使用 - 用户登录示例- 用户注册示例- 数据库获取数据实时更新 ...
- SVN下载地址及注意事项
SVN下载地址:VisualSVN:http://www.visualsvn.com/server/download 服务器端(添加仓库和用户)TortoiseSVN:http://torto ...
- docker入门及安装
Docker简介 Docker是一个开源的引擎,可以轻松的为任何应用创建一个轻量级的.可移植的.自给自足的容器.开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机).ba ...
- python核心编程第3章课后题答案(第二版55页)
3-4Statements Ues ; 3-5Statements Use\(unless part of a comma-separated sequence in which case \ is ...
- Java 自定义异常类
类1:public class LogicException extends RuntimeException { //业务逻辑异常 /** * * @param mes ...
- (转)关于Update语句的锁
原文地址:http://www.cnblogs.com/wdfrog/p/3144020.html 环境:MSSQL2005,在Read Committed级别 语句A:begin tranUpdat ...
- 浅谈delphi创建Windows服务程序与窗体实现交互
我想实现的功能是创建一个服务程序,然后在服务Start时动态创建一个窗体Form,然后把Form缩小时变成TrayIcon放在Windows托盘上. 我在服务程序的OnStart事件中写到 Start ...
- 获取服务端https证书 - Java版
接上篇,用java代码实现一下获取远程服务端证书,还是拿新浪首页测试,上代码: package org.test; import java.net.URL; import java.security. ...