题解

二分+树状数组

显然最和一个数的值就是rank

那么其它数有什么规律?

从后往前匹配rank,我们可以发现第i个数的rank为还没有匹配的rank第(a[i]+1)大的数

这可以用 树状数组+二分 来求

一个数被选是0, 否则为1

显然sum(i) 表示第i个数前面有多少没被选的

二分找, 最小的i 使得 sum(i) == K

Code

#include<cstdio>
#define LL long long
#define RG register using namespace std; inline int gi() {
RG int x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x : x;
}
const int N = 80010;
int a[N], t[N], n;
#define lowbit(x) (x&(-x))
void add(int x, int k) {
while (x <= n)
t[x] += k, x += lowbit(x);
return ;
}
inline int sum(int x) {
int s = 0;
while (x) s += t[x], x -= lowbit(x);
return s;
}
int rank[N];
int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 2; i <= n; i++) a[i] = gi();
for (int i = 1; i <= n; i++)
add(i, 1);
for (int i = n; i; i--) {
int l = 1, r = n;
while (l <= r) {
int mid = (l + r) >> 1;
if (sum(mid) >= a[i]+1)
r = mid-1;
else l = mid+1;
}
rank[i] = r+1;
add(r+1, -1);
}
for (int i = 1; i <= n; i++)
printf("%d\n", rank[i]);
return 0;
}

POJ 2182 Lost Cows (求序列第k大)的更多相关文章

  1. POJ 2104 K-th Number ( 求取区间 K 大值 || 主席树 || 离线线段树)

    题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用 ...

  2. 线段树/树状数组 POJ 2182 Lost Cows

    题目传送门 题意:n头牛,1~n的id给它们乱序编号,已知每头牛前面有多少头牛的编号是比它小的,求原来乱序的编号 分析:从后往前考虑,最后一头牛a[i] = 0,那么它的编号为第a[i] + 1编号: ...

  3. POJ2761---Feed the dogs (Treap求区间第k大)

    题意 就是求区间第k大,区间 不互相包含. 尝试用treap解决一下 第k大的问题. #include <set> #include <map> #include <cm ...

  4. poj 2182 Lost Cows(段树精英赛的冠军)

    主题链接:http://poj.org/problem? id=2182 Lost Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. POJ 2182 Lost Cows 【树状数组+二分】

    题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  6. poj2182(线段树求序列第k小)

    题目链接:https://vjudge.net/problem/POJ-2182 题意:有n头牛,从1..n编号,乱序排成一列,给出第2..n个牛其前面有多少比它编号小的个数,记为a[i],求该序列的 ...

  7. POJ 2388 Who's in the Middle (快速选择算法:O(N)求数列第K大)

    [题意]求数列中间项. ---这里可以扩展到数列第K项. 第一次做的时候直接排序水过了= =--这一次回头来学O(N)的快速选择算法. 快速选择算法基于快速排序的过程,每个阶段我们选择一个数为基准,并 ...

  8. 【POJ】【2104】区间第K大

    可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可 ...

  9. HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)

    题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小 找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和 区间中位数可以使用划分树,然后在其中记录:每层 ...

随机推荐

  1. SSH隧道技术简介

    本文的受众如果你遇到了以下问题,那么你应该阅读这篇文章 我听说过这种技术,我对它很感兴趣 我想在家里访问我在公司的机器(写程序,查数据,下电影). 公司为了防止我们用XX软件封锁了它的端口或者服务器地 ...

  2. 使用百度翻译的API接口

    http://api.fanyi.baidu.com/api/trans/product/desktop 这是申请的接口地址,会得到一个APPID和一个钥密 然后下载PHP的对应的代码 有一个PHP文 ...

  3. 在Build Path中包含其他工程

    ------------siwuxie095                                 在 TestBuildPath 的 Build Path 中包含 SupportProje ...

  4. Mock Server实践

    转载自 https://tech.meituan.com/mock-server-in-action.html 背景 在美团服务端测试中,被测服务通常依赖于一系列的外部模块,被测服务与外部模块间通过R ...

  5. Android 单例模式探讨

    Singleton模式可以是很简单的,它的全部只需要一个类就可以完成(看看这章可怜的UML图).但是如果在“对象创建的次数以及何时被创建”这两点上较真起来,Singleton模式可以相当的复杂,比头五 ...

  6. Django JSON-RPC

    Django JSON-RPC https://github.com/samuraisam/django-json-rpc =============== A basic JSON-RPC Imple ...

  7. 何为软件的Alpha、Beta、RC和GA发布版本?

    简介 一个软件或者一个功能在发布时,通常会有Beta版这么一说.我很熟悉,差不多知道是什么意思,但没去深究,感觉上就是一个可以用但不保证功能稳定的版本. 直到昨天我看到了 MariaDB 数据库发布标 ...

  8. (转)什么?你还不会写JQuery 插件

    原文地址:http://www.cnblogs.com/joey0210/p/3408349.html 前言 如今做web开发,jquery 几乎是必不可少的,就连vs神器在2010版本开始将Jque ...

  9. smartUpload上传下载

    上传 file_upload_smart_form.jsp文件代码 <%@ page contentType="text/html;charset=gb2312" langu ...

  10. C# 文本输入限制类型,datagridview单元格输入验证

    1.只能输入double类型 private void textBoxX6_KeyPress(object sender, KeyPressEventArgs e) { { //数字0~9所对应的ke ...