Ants

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 1324    Accepted Submission(s): 289

Problem Description
  There are some apple trees in a farm. An apple tree can be described as a connected graph which has n nodes and n-1 edges. The apples are the nodes and the branches are the edges. Every edge is assigned a value denoting the length of the branch. 
  Now in the farm come a lot of ants, which are going to enjoy the delicious apples. The ants climb the tree one by one. Every ant would choose a node as the starting node and another node as the ending node, then it would crawl alone the unique path from the starting node to the ending node. The distance between two nodes is defined as the XOR sum of lengths of all the edges in the unique path between them. Every ant wants to crawl along such a path which the distance is as large as possible. But two ants cannot crawl from the same starting node to the same ending node. You should calculate the distance which the k-th ant crawled.
  Note that the starting node and the ending node cannot be the same for an ant.

 
Input
  The input consists of several test case.
  For each test case, the first line contain an integer n denoting the number of nodes.
  The next n-1 lines each contains three integers x,y,z, denoting that there exists an edge between node x and node y and its length is z. The nodes are numbered from 1 to n.
  The next line contain a integer m denoting the number of queries.
  In the next m lines, each line contains an integer k denoting that you need to calculate the distance of the k-th ant.
  The input ends with n = 0.
  (1 <= n, m <= 100000, 1 <= x, y <= n, 0 <= z <= 1018, 1 <= k <= 200000)
 
Output
  For each query, output the answer. If such path does not exist, just output -1.

 
Sample Input
3
1 2 2
3 2 3
3
1
2
5
 
5
1 3 7
2 1 3
4 3 6
5 3 1
3
1
8
1000
 
0
 
Sample Output
3
3
1
7
6
-1

Hint

  In the first test case, the first ant may crawl from node 2 to node 3, and the second ant may crawl from node 3 to node 2, and the 5-th ant may crawl from node 1 to node 3.
  The distance of the 5-th ant can be calculated by 2 xor 3 = 1.

题目链接:HDU 4776

题意就是求第K大路径异或值,那很容易想到用前缀和的思想把一条路径的异或值用DFS转换成$val[u]\oplus val[v]$,其中$val[i]$是从根节点到$i$节点的路径异或和,那么题目就变成了给定大小为N个数列$val[]$,求第K大的两两异或值$val[i]\oplus val[j]$。可以先从第1大开始求,第1大很简单,对于所有的$val[i]$,找出它能异或出的最大值$val[i]\oplus val[j]$,那么这些最大值序列中全局最大的就是第1大的值,然后考虑第2大,可以发现第2大只能来自两种情况:第1大的值对应的节点下第2大的值或者是就是原来求第1大的时候第2大的值,而第3、第4大其本身和后面的迭代结果不会成为当前的第2大,因为目前的第2大已经比后面的数都大了,对于一个节点$u$,每一次去找它的第$k+1$大的值,数值必定是递减的也就是说$真实的第k大 \ge 迭代x次的第k大$,既然每一次迭代会变小,那么迭代1次总可以得到最大可能的第k大就是真实的第k大;然后就是不停地取出当前的最大值,去更新,如果这个节点更新的次数超过$n-1$次,那么就不能再更新了,因为它最多和$n-1$个数组合,即最多拥有$n-1$个异或值。

那如何用Trie求某个数的第k大的异或值呢,用主席树的思想,看当前节点的反方向子节点下的节点数是否大于等于k,如果大于等于k则可以往反方向走,否则只能正着走并用k减去节点个数

可以参照这个图理解:

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
struct edge
{
int to, nxt;
LL v;
edge() {}
edge(int _to, int _nxt, LL _v): to(_to), nxt(_nxt), v(_v) {}
} E[N << 1];
struct Trie
{
int nxt[2];
int cnt;
LL v;
void init()
{
nxt[0] = nxt[1] = 0;
cnt = 0;
v = 0;
}
} L[N * 61];
struct info
{
int k;
LL val;
LL Max_xor_val;
bool operator<(const info &rhs)const
{
return Max_xor_val < rhs.Max_xor_val;
}
};
int head[N], tot;
LL arr[N];
int sz;
int n, m;
priority_queue<info>Q;
pii query[N << 1];
LL ans[N << 1]; void init()
{
CLR(head, -1);
tot = 0;
sz = 1;
L[0].init();
while (Q.size())
Q.pop();
}
inline void add(int s, int t, LL d)
{
E[tot] = edge(t, head[s], d);
head[s] = tot++;
}
void dfs(int u, int f, LL sum)
{
arr[u] = sum;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (v != f)
dfs(v, u, sum ^ E[i].v);
}
}
void Insert(LL val)
{
int u = 0;
for (int i = 60; i >= 0; --i)
{
int v = (val >> i) & 1;
if (!L[u].nxt[v])
{
L[sz].init();
L[u].nxt[v] = sz++;
}
u = L[u].nxt[v];
++L[u].cnt;
}
L[u].v = val;
}
LL getKth(LL val, int k)
{
if (k > n - 1)
return -1;
int u = 0;
for (int i = 60; i >= 0; --i)
{
int v = (val >> i) & 1;
int cnt = L[L[u].nxt[v ^ 1]].cnt;
if (cnt >= k)
u = L[u].nxt[v ^ 1];
else
{
k -= cnt;
u = L[u].nxt[v];
}
}
return val ^ L[u].v;
}
int main(void)
{
int u, v, i;
LL x;
while (~scanf("%d", &n) && n)
{
init();
for (i = 1; i < n; ++i)
{
scanf("%d%d%I64d", &u, &v, &x);
add(u, v, x);
add(v, u, x);
}
scanf("%d", &m);
for (i = 0; i < m; ++i)
{
scanf("%d", &query[i].first);
query[i].second = i;
}
sort(query, query + m); dfs(1, -1, 0LL);
for (i = 1; i <= n; ++i)
Insert(arr[i]);
for (i = 1; i <= n; ++i)
{
LL Max_xor_val = getKth(arr[i], 1);
if (~Max_xor_val)
Q.push({1, arr[i], Max_xor_val});
}
int Rank = 1;
for (i = 0; i < m; ++i)
{
while (!Q.empty() && Rank < query[i].first)//每次取最大的节点进行扩展
{
info now = Q.top();
Q.pop();
++now.k;
LL Max_xor_val = getKth(now.val, now.k);
if (~Max_xor_val)
{
now.Max_xor_val = Max_xor_val;
Q.push(now);
}
++Rank;
}
if (!Q.empty())
ans[query[i].second] = Q.top().Max_xor_val;
else
ans[query[i].second] = -1;
}
for (i = 0; i < m; ++i)
printf("%I64d\n", ans[i]);
}
return 0;
}

HDU 4776 Ants(Trie+优先队列)的更多相关文章

  1. HDU 4857 拓扑排序 优先队列

    n个数,已经有大小关系,现给m个约束,规定a在b之前,剩下的数要尽可能往前移.输出序列 大小关系显然使用拓扑结构,关键在于n个数本身就有大小关系,那么考虑反向建图,优先选择值最大的入度为零的点,这样得 ...

  2. HDU 4857 逃生 (优先队列+反向拓扑)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 解题报告:有n个点,有m个条件限制,限制是像这样的,输入a  b,表示a必须排在b的前面,如果不 ...

  3. HDU 1242 (BFS搜索+优先队列)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1242 题目大意:多个起点到一个终点,普通点耗时1,特殊点耗时2,求到达终点的最少耗时. 解题思路: ...

  4. HDU 5638 拓扑排序+优先队列

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5638 题意: 给你一个DAG图,删除k条边,使得能个得到字典序尽可能小的拓扑排序 题解: 把拓扑排序 ...

  5. HDU4776 Ants(Trie && xor)

    之前mark下来的一道题,今天填一下坑. 题意是这样子的.给你一棵边上有权的树.然后有树上两点(u,v)的路径有n*(n-1)条,路径(u,v)的权值是边权的xor. 然后下面有m个询问,询问你n*( ...

  6. hdu - 1242 Rescue && hdu - 2425 Hiking Trip (优先队列+bfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=1242 感觉题目没有表述清楚,angel的朋友应该不一定只有一个,那么正解就是a去搜索r,再用普通的bfs就能过了 ...

  7. HDU 1242 Rescue(优先队列)

    题目来源: http://acm.hdu.edu.cn/showproblem.php?pid=1242 题目描述: Problem Description   Angel was caught by ...

  8. HDU 1242 Rescue(BFS+优先队列)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1242 题目描述: Problem Description Angel was caught by t ...

  9. HDU 2296 Ring ( Trie图 && DP && DP状态记录)

    题意 : 给出 m 个单词,每一个单词有一个权重,如果一个字符串包含了这些单词,那么意味着这个字符串拥有了其权重,问你构成长度为 n 且权重最大的字符串是什么 ( 若有权重相同的,则输出最短且字典序最 ...

随机推荐

  1. Spark-源码-SparkContext的初始化

    Spark版本 1.3SparkContext初始化流程 1.0 在我们的主类 main() 方法中经常会这么写 val conf = new SparkConf().setAppName(" ...

  2. scala成长之路(3)隐式转换

    不废话,先上例子:定义一个参数类型为String的函数: scala> def sayHello(name:String) = println("hello " + name ...

  3. liunx下搭建python开发环境

    =============================================================================注意: 在linux下安装新的版本的pytho ...

  4. The Road to learn React书籍学习笔记(第四章)

    高级React组件 本章将重点介绍高级 React 组件的实现.我们将了解什么是高阶组件以及如何实现它们.此外,我们还将深入探讨 React 中更高级的主题,并用它实现复杂的交互功能. 引用 DOM ...

  5. springmvc springboot 跨域问题(CORS)

    官方文档:http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cors.html springmvc s ...

  6. 【jQuery】 Ajax

    [jQuery] Ajax $.ajax({ type: "Post", // 发包方式 cache: false, // 是否缓存 contentType: "appl ...

  7. 「暑期训练」「Brute Force」 Far Relative’s Problem (CFR343D2B)

    题意 之后补 分析 我哭了,强行增加自己的思考复杂度...明明一道尬写的题- -(往区间贪心方向想了 其实完全没必要,注意到只有366天,直接穷举判断即可. 代码 #include <bits/ ...

  8. 【性能调优】一次关于慢查询及FGC频繁的调优经历

    以下来分享一个关于MySQL数据库慢查询和FGC频繁的性能案例. 一.系统架构 一个简单的dubbo服务,服务提供者提供接口,并且提供接口的实现,提供方注册服务到Zookeeper注册中心,然后消费者 ...

  9. 06-Mysql数据库----表的操作

    06-表的操作   本节掌握 存储引擎介绍(了解) 表的增删改查 一.存储引擎(了解) 前几节我们知道mysql中建立的库===>文件夹,库中的表====>文件 现实生活中我们用来存储数据 ...

  10. HDFS伪分布式

    (一).HDFS shell操作 以上已经介绍了如何搭建伪分布式的Hadoop,既然环境已经搭建起来了,那要怎么去操作呢?这就是本节将要介绍的内容: HDFS自带有一些shell命令,通过这些命令我们 ...