【bzoj3262】陌上花开 CDQ分治+树状数组
题目描述
输入
输出
样例输入
10 3
3 3 3
2 3 3
2 3 1
3 1 1
3 1 2
1 3 1
1 1 2
1 2 2
1 3 2
1 2 1
样例输出
3
1
3
0
1
0
1
0
0
1
题解
CDQ分治+树状数组
先将第一维排序,直接干掉第一维,然后第二维使用CDQ分治。
按照CDQ分治的思(tao)路,将所求区间[l,r]化为两个子区间[l,mid]和[mid+1,r],先处理左边,再处理右边,最后处理左边对右边的影响。
将[l,mid]和[mid+1,r]按照第二维排序,然后寻找左区间左端和右区间左端的y值哪个小。如果左边小(包括等于),就把左边的第三维加到树状数组中,左区间左端+1;否则查询第三维以下的个数加入答案中,右区间左端+1,最后再在树状数组中减回去(CDQ分治绝对不能使用memset!)。
因为本题是对区间的处理,所以我使用了归并排序,亲测快排时间是这个的3倍左右。
排序会改变次序,所以需要使用结构体储存num。
然后由每个元素的num得到num为某值的个数即可。
由于题目中可能存在三维都相同的两个元素,所以必须先去重,统计个数;计算答案时要把这些相同的也算在内。
#include <cstdio>
#include <algorithm>
using namespace std;
struct data
{
int x , y , z , num , cnt;
}a[100010] , v[100010] , tmp[100010];
int n , k , tot , f[200010] , ans[100010];
bool cmp(data a , data b)
{
return a.x == b.x ? (a.y == b.y ? a.z < b.z : a.y < b.y) : a.x < b.x;
}
void update(int x , int a)
{
int i;
for(i = x ; i <= k ; i += i & -i) f[i] += a;
}
int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
void solve(int l , int r)
{
if(l == r) return;
int mid = (l + r) >> 1 , i = l , j = mid + 1 , p = l;
solve(l , mid) , solve(mid + 1 , r);
while(i <= mid || j <= r)
{
if(i <= mid && (j > r || v[i].y <= v[j].y)) tmp[p ++ ] = v[i] , update(v[i].z , v[i].cnt) , i ++ ;
else tmp[p] = v[j] , tmp[p ++ ].num += query(v[j].z) , j ++ ;
}
for(i = l ; i <= mid ; i ++ ) update(v[i].z , -v[i].cnt);
for(i = l ; i <= r ; i ++ ) v[i] = tmp[i];
}
int main()
{
int i;
scanf("%d%d" , &n , &k);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d%d" , &a[i].x , &a[i].y , &a[i].z);
sort(a + 1 , a + n + 1 , cmp);
for(i = 1 ; i <= n ; i ++ )
{
if(a[i].x != a[i - 1].x || a[i].y != a[i - 1].y || a[i].z != a[i - 1].z) v[++tot] = a[i];
v[tot].cnt ++ ;
}
solve(1 , tot);
for(i = 1 ; i <= tot ; i ++ ) ans[v[i].num + v[i].cnt - 1] += v[i].cnt;
for(i = 0 ; i < n ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}
【bzoj3262】陌上花开 CDQ分治+树状数组的更多相关文章
- bzoj3262: 陌上花开(cdq分治+树状数组)
3262: 陌上花开 题目:传送门 题解: %%%cdq分治 很强大的一个暴力...感觉比分块高级多了 这道题目就是一个十分经典的三维偏序的例题: 一维直接暴力排序x 二维用csq维护y 三维用树状数 ...
- [Bzoj3262]陌上花开(CDQ分治&&树状数组||树套树)
题目链接 题目就是赤裸裸的三维偏序,所以用CDQ+树状数组可以比较轻松的解决,但是还是树套树好想QAQ CDQ+树状数组 #include<bits/stdc++.h> using nam ...
- bzoj 3262 陌上花开 - CDQ分治 - 树状数组
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
- BZOJ_3262_陌上花开_CDQ分治+树状数组
BZOJ_3262_陌上花开_CDQ分治+树状数组 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现在要对每朵花评级,一朵花的级别是它拥有的 ...
- 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组
[BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...
- BZOJ 1176 Mokia CDQ分治+树状数组
1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1854 Solved: 821[Submit][St ...
- 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组
题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...
- BZOJ 2683 简单题 cdq分治+树状数组
题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...
- LOJ3146 APIO2019路灯(cdq分治+树状数组)
每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...
随机推荐
- lvs集群实现lvs-dr模型和lvs-nat模型
ipvsadm ipvsadm命令是lvs集群在应用层的管理工具,我们可以通过此ipvsadm来管理lvs的配置,其实现了集群服务管理:增.删.改,集群服务的RS管理:增.删.改以及查看集群状态. 管 ...
- 【ISIS(中间系统到中间系统)路由链路状态信息协议初识】
ISIS单区域的基本配置 一:根据项目需求,考虑到组网的规模和条件,部署ISIS单区域的拓扑图如下: 二:配置 1:首先对RTA进行配置,在系统视图创建ISIS进程:进入ISIS配置视图,指定IS的级 ...
- JZOJ 5934. 列队
Description Sylvia是一个热爱学习的女孩子. 在平时的练习中,他总是能考到std以上的成绩,前段时间,他参加了一场练习赛,众所周知,机房是一个 的方阵.这 ...
- ExceL按记录导出Txt 工具
根据客户要求,开发此工具,每一条记录改出一个Txt文本,文本名取其中一字段数据
- MySQL 主从服务器配置
在主服务器Ubuntu上进行备份,执行命令: mysqldump -uroot -p --all-databases --lock-all-tables > ~/master_db.sql -u ...
- Kubernetes-GC
Kubernetes集群中垃圾回收(Garbage Collection)机制由kubelet完成.kubelet定期清理不再使用的容器和镜像,每分钟进行一次容器的GC操作,每五分钟进行一次镜像的GC ...
- 41-Individual authentication 模板
1-创建项目,进入vscode控制台,输出如下命令, uld表示指定mssqllocaldb E:\coding\netcore>dotnet new mvc -au Individual -u ...
- urllib.request.urlretrieve()
urllib模块提供的urlretrieve()函数.urlretrieve()方法直接将远程数据下载到本地. urlretrieve(url, filename=None, reporthook=N ...
- Bootstrap4用法
#Bootstrap4 ## 网格系统- .col- 针对所有设备- .col-sm- 平板 - 屏幕宽度等于或大于 576px- .col-md- 桌面显示器 - 屏幕宽度等于或大于 768px)- ...
- Android TV 开发(3)
本文来自网易云社区 作者:孙有军 <LinearLayout android:id="@+id/input_num_line_3" and ...