BNU4299——God Save the i-th Queen——————【皇后攻击,找到对应关系压缩空间】
God Save the i-th Queen
64-bit integer IO format: %lld Java class name: Main
None
Graph Theory
2-SAT
Articulation/Bridge/Biconnected Component
Cycles/Topological Sorting/Strongly Connected Component
Shortest Path
Bellman Ford
Dijkstra/Floyd Warshall
Euler Trail/Circuit
Heavy-Light Decomposition
Minimum Spanning Tree
Stable Marriage Problem
Trees
Directed Minimum Spanning Tree
Flow/Matching
Graph Matching
Bipartite Matching
Hopcroft–Karp Bipartite Matching
Weighted Bipartite Matching/Hungarian Algorithm
Flow
Max Flow/Min Cut
Min Cost Max Flow
DFS-like
Backtracking with Pruning/Branch and Bound
Basic Recursion
IDA* Search
Parsing/Grammar
Breadth First Search/Depth First Search
Advanced Search Techniques
Binary Search/Bisection
Ternary Search
Geometry
Basic Geometry
Computational Geometry
Convex Hull
Pick's Theorem
Game Theory
Green Hackenbush/Colon Principle/Fusion Principle
Nim
Sprague-Grundy Number
Matrix
Gaussian Elimination
Matrix Exponentiation
Data Structures
Basic Data Structures
Binary Indexed Tree
Binary Search Tree
Hashing
Orthogonal Range Search
Range Minimum Query/Lowest Common Ancestor
Segment Tree/Interval Tree
Trie Tree
Sorting
Disjoint Set
String
Aho Corasick
Knuth-Morris-Pratt
Suffix Array/Suffix Tree
Math
Basic Math
Big Integer Arithmetic
Number Theory
Chinese Remainder Theorem
Extended Euclid
Inclusion/Exclusion
Modular Arithmetic
Combinatorics
Group Theory/Burnside's lemma
Counting
Probability/Expected Value
Others
Tricky
Hardest
Unusual
Brute Force
Implementation
Constructive Algorithms
Two Pointer
Bitmask
Beginner
Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
Greedy
Divide and Conquer
Dynamic Programming
Tag it!
Input
Output
Sample Input
8 8 2
4 5
5 5
0 0 0
Sample Output
20 解题思路:刚拿到题目的时候用的暴力,结果数组超内存,又用了set,又超时。后来知道,可以只开4个数组来存覆盖情况。即row,col,pie,na数组来记录行列和撇捺(对角线情况)。可以发现pie数组由x,y相加减1后得到。na数组可以将y转化为相对于右上角的位置为(Y-y+1)。然后枚举地图中各个点,然后判断该点既不在行列,也不在撇捺(对角线)的情况,记录个数即可。
#include<bits/stdc++.h>
using namespace std;
const int maxn=21000;
bool row[maxn],col[maxn],pie[maxn*2],na[maxn*2];
void init(){
memset(row,0,sizeof(row));
memset(col,0,sizeof(col));
memset(pie,0,sizeof(pie));
memset(na,0,sizeof(na));
}
int main(){
int X,Y,n;
while(scanf("%d%d%d",&X,&Y,&n)!=EOF&&(X+Y+n)){
init();
for(int i=0;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
row[x]=1; //记录该行被覆盖
col[y]=1; //记录该列被覆盖
pie[x+y-1]=1; //记录右上到左下的对角线被覆盖
na[Y-y+x]=1; //记录左上到右下的对角线被覆盖
}
int num=0;
for(int i=1;i<=X;i++){
for(int j=1;j<=Y;j++){
if((!row[i])&&(!col[j])&&(!pie[i+j-1])&&(!na[Y-j+i])){
//枚举各个点,如果行列撇捺都没覆盖,加1
num++;
}
}
}
printf("%d\n",num);
}
return 0;
}
BNU4299——God Save the i-th Queen——————【皇后攻击,找到对应关系压缩空间】的更多相关文章
- C语言解决八皇后问题
#include <stdio.h> #include <stdlib.h> /* this code is used to cope with the problem of ...
- [题解]N 皇后问题总结
N 皇后问题(queen.cpp) [题目描述] 在 N*N 的棋盘上放置 N 个皇后(n<=10)而彼此不受攻击(即在棋盘的任一行,任一列和任一对角线上不能放置 2 个皇后) ,编程求解所有的 ...
- [算法] N 皇后
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...
- N皇后问题--回溯法
1.引子 中国有一句古话,叫做“不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每 ...
- HDU 2553 n皇后问题(回溯法)
DFS Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description ...
- 52. N-Queens II N皇后II
网址:https://leetcode.com/problems/n-queens-ii/ 方法1:按照逻辑思路,通过回溯法解决问题.速度较慢! class Solution { public: vo ...
- 八皇后问题C语言解法
偶遇八皇后问题,随即自己写了一个仅供参考 #include<stdio.h> #include<math.h> #define SIZE 8 void Circumsribe( ...
- 【搜索】还是N皇后
先看题才是最重要的: 这道题有点难理解,毕竟Code speaks louder than words,所以先亮代码后说话: #include<iostream> using namesp ...
- UVa 11538 Chess Queen (排列组合计数)
题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...
随机推荐
- .net core in Docker 部署方案(随笔)
前一段时间由于项目需要 .net core 在docker下的部署,途中也遇到很多坑,看了各同行的博客觉得多多少少还是有些问题,原本不想写此篇文章,由于好友最近公司也需要部署,硬是要求,于是花了些时间 ...
- SQL Server乱码处理(ASCII)
CREATE FUNCTION [dbo].[RegexReplace] ( @string VARCHAR(MAX), --被替换的字符串 @pattern VARCHAR(255), --替换模板 ...
- Intellij IDEA神器那些让人爱不释手的小技巧
完整的IDEA使用教程,GitHub地址: https://github.com/judasn/IntelliJ-IDEA-Tutorial 概述 之前写了一篇介绍IntellIJ IDEA的文章 ...
- k8s(未完待续)
K8s简介Kubernetes(k8s)是自动化容器操作的开源平台,这些操作包括部署,调度和节点集群间扩展. 使用Kubernetes可以 自动化容器的部署和复制 随时扩展或收缩容器规模 将容器 ...
- Deploy Flask app to Apache on Windows
内容已过期,分割线以下为原文存档. 故事背景 这次我需要将一个Flask应用部署到本地的Windows服务器上.操作系统是64位的,程序是基于Python 3开发的,大体就是这样. 部署选项 根据Fl ...
- [CQOI2007]涂色 BZOJ 1260 区间dp
题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续的木版涂成一个 ...
- AF 与 PF区别
AF 表示ADDRESS FAMILY 地址族 PF 表示PROTOCL FAMILY 协议族 Winsock2.h中#define AF_INET 0#define PF_INET AF_INET ...
- ubuntu下安装和更新R语言
R官网更新说明 https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/linux/ubuntu/README.html 本文主要讲解在ubuntu下如何安装和更新 ...
- poj1182 食物链 带权并查集
题目传送门 题目大意:大家都懂. 思路: 今天给实验室的学弟学妹们讲的带权并查集,本来不想细讲的,但是被学弟学妹们的态度感动了,所以写了一下这个博客,思想在今天白天已经讲过了,所以直接上代码. 首先, ...
- NodeJS使用SSL证书
[From] https://segmentfault.com/q/1010000004705326 var options = { key: fs.readFileSync('../ssl/priv ...