God Save the i-th Queen

Time Limit: 5000ms
Memory Limit: 65536KB

64-bit integer IO format: %lld      Java class name: Main

Type:

None

 

None
 
Graph Theory
 
    2-SAT
 
    Articulation/Bridge/Biconnected Component
 
    Cycles/Topological Sorting/Strongly Connected Component
 
    Shortest Path
 
        Bellman Ford
 
        Dijkstra/Floyd Warshall
 
    Euler Trail/Circuit
 
    Heavy-Light Decomposition
 
    Minimum Spanning Tree
 
    Stable Marriage Problem
 
    Trees
 
    Directed Minimum Spanning Tree
 
    Flow/Matching
 
        Graph Matching
 
            Bipartite Matching
 
            Hopcroft–Karp Bipartite Matching
 
            Weighted Bipartite Matching/Hungarian Algorithm
 
        Flow
 
            Max Flow/Min Cut
 
            Min Cost Max Flow
 
DFS-like
 
    Backtracking with Pruning/Branch and Bound
 
    Basic Recursion
 
    IDA* Search
 
    Parsing/Grammar
 
    Breadth First Search/Depth First Search
 
    Advanced Search Techniques
 
        Binary Search/Bisection
 
        Ternary Search
 
Geometry
 
    Basic Geometry
 
    Computational Geometry
 
    Convex Hull
 
    Pick's Theorem
 
Game Theory
 
    Green Hackenbush/Colon Principle/Fusion Principle
 
    Nim
 
    Sprague-Grundy Number
 
Matrix
 
    Gaussian Elimination
 
    Matrix Exponentiation
 
Data Structures
 
    Basic Data Structures
 
    Binary Indexed Tree
 
    Binary Search Tree
 
    Hashing
 
    Orthogonal Range Search
 
    Range Minimum Query/Lowest Common Ancestor
 
    Segment Tree/Interval Tree
 
    Trie Tree
 
    Sorting
 
    Disjoint Set
 
String
 
    Aho Corasick
 
    Knuth-Morris-Pratt
 
    Suffix Array/Suffix Tree
 
Math
 
    Basic Math
 
    Big Integer Arithmetic
 
    Number Theory
 
        Chinese Remainder Theorem
 
        Extended Euclid
 
        Inclusion/Exclusion
 
        Modular Arithmetic
 
    Combinatorics
 
        Group Theory/Burnside's lemma
 
        Counting
 
    Probability/Expected Value
 
Others
 
    Tricky
 
    Hardest
 
    Unusual
 
    Brute Force
 
    Implementation
 
    Constructive Algorithms
 
    Two Pointer
 
    Bitmask
 
    Beginner
 
    Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
 
    Greedy
 
    Divide and Conquer
 
Dynamic Programming
                  Tag it!

Did you know that during the ACM-ICPC World Finals a big chessboard is installed every year and is available for the participants to play against each other? In this problem, we will test your basic chess-playing abilities to verify that you would not make a fool of yourself if you advance to the World Finals.
During the yesterday’s Practice Session, you tried to solve the problem of N independent rooks. This time, let’s concentrate on queens. As you probably know, the queens may move not only
horizontally and vertically, but also diagonally.
You are given a chessboard with i−1 queens already placed and your task is to find all squares that may be used to place the i-th queen such that it cannot be captured by any of the others.
 

Input

The input consists of several tasks. Each task begins with a line containing three integer numbers separated by a space: XNand give the chessboard size, 1  X, Y 20 000. i1 is the number of queens already placed, 0  N  X·.
After the first line, there are lines, each containing two numbers xk, yk separated by a space. They give the position of the k-th queen, 1  xk  X, 1  yk  Y . You may assume that those positions are distinct, i.e., no two queens share the same square.
The last task is followed by a line containing three zeros.
 

Output

For each task, output one line containing a single integer number: the number of squares which are not occupied and do not lie on the same row, column, or diagonal as any of the existing queens.
 

Sample Input

8 8 2
4 5
5 5
0 0 0

Sample Output

20

解题思路:刚拿到题目的时候用的暴力,结果数组超内存,又用了set,又超时。后来知道,可以只开4个数组来存覆盖情况。即row,col,pie,na数组来记录行列和撇捺(对角线情况)。可以发现pie数组由x,y相加减1后得到。na数组可以将y转化为相对于右上角的位置为(Y-y+1)。然后枚举地图中各个点,然后判断该点既不在行列,也不在撇捺(对角线)的情况,记录个数即可。

#include<bits/stdc++.h>
using namespace std;
const int maxn=21000;
bool row[maxn],col[maxn],pie[maxn*2],na[maxn*2];
void init(){
memset(row,0,sizeof(row));
memset(col,0,sizeof(col));
memset(pie,0,sizeof(pie));
memset(na,0,sizeof(na));
}
int main(){
int X,Y,n;
while(scanf("%d%d%d",&X,&Y,&n)!=EOF&&(X+Y+n)){
init();
for(int i=0;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
row[x]=1; //记录该行被覆盖
col[y]=1; //记录该列被覆盖
pie[x+y-1]=1; //记录右上到左下的对角线被覆盖
na[Y-y+x]=1; //记录左上到右下的对角线被覆盖
}
int num=0;
for(int i=1;i<=X;i++){
for(int j=1;j<=Y;j++){
if((!row[i])&&(!col[j])&&(!pie[i+j-1])&&(!na[Y-j+i])){
//枚举各个点,如果行列撇捺都没覆盖,加1
num++;
}
}
}
printf("%d\n",num);
}
return 0;
}

  

BNU4299——God Save the i-th Queen——————【皇后攻击,找到对应关系压缩空间】的更多相关文章

  1. C语言解决八皇后问题

    #include <stdio.h> #include <stdlib.h> /* this code is used to cope with the problem of ...

  2. [题解]N 皇后问题总结

    N 皇后问题(queen.cpp) [题目描述] 在 N*N 的棋盘上放置 N 个皇后(n<=10)而彼此不受攻击(即在棋盘的任一行,任一列和任一对角线上不能放置 2 个皇后) ,编程求解所有的 ...

  3. [算法] N 皇后

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  4. N皇后问题--回溯法

    1.引子 中国有一句古话,叫做“不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每 ...

  5. HDU 2553 n皇后问题(回溯法)

     DFS Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description ...

  6. 52. N-Queens II N皇后II

    网址:https://leetcode.com/problems/n-queens-ii/ 方法1:按照逻辑思路,通过回溯法解决问题.速度较慢! class Solution { public: vo ...

  7. 八皇后问题C语言解法

    偶遇八皇后问题,随即自己写了一个仅供参考 #include<stdio.h> #include<math.h> #define SIZE 8 void Circumsribe( ...

  8. 【搜索】还是N皇后

    先看题才是最重要的: 这道题有点难理解,毕竟Code speaks louder than words,所以先亮代码后说话: #include<iostream> using namesp ...

  9. UVa 11538 Chess Queen (排列组合计数)

    题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...

随机推荐

  1. 通用唯一识别码——UUID(Python)

    一.概述: UUID(Universally Unique Identity)的缩写,是一种软件建构的标准,通常由32字节16进制数表示(128位),它可以保证时间和空间的唯一性.目前应用最广泛的UU ...

  2. Java代码生成16位纯数字的订单号

    //生成16位唯一性的订单号 public static void getUUID(){ //随机生成一位整数 int random = (int) (Math.random()*9+1); Stri ...

  3. 20165219 2017-2018-2《Java程序设计》课程总结

    20165219 2017-2018-2<Java程序设计>课程总结 一.每周作业链接汇总 20165219 我期望的师生关系 20165219学习基础与C语言基础调查 20165219 ...

  4. zabbix 3.0 快速安装文档

    下载地址:http://www.zabbix.com/download.php 官方文档:https://www.zabbix.com/documentation/3.0/manual/install ...

  5. OpenStack-Mitaka

    一.Cloud 基础概念 IAAS:Infrastructre As A Service 基础架构及服务,OpenStack,CloudStack PAAS:Platform As A Service ...

  6. 运用CSS高斯模糊添加图片加载效果

    <!DOCTYPE html> <html> <head> <title>大图片加载从模糊到清晰</title> </head> ...

  7. 获取select text 值 得获取选中的option

    $("#magSeaTypeSelect option:selected").text();

  8. 22.Container With Most Water(能装最多水的容器)

    Level:   Medium 题目描述: Given n non-negative integers a1, a2, ..., an , where each represents a point ...

  9. 搭建svn管理平台

    安装svn服务器:yum -y install subversion 创建svn的目录:mkdir -p /data/svn 初始化svn目录:svnadmin create /data/svn co ...

  10. Java ExecutorService 四种线程池

    1.new Thread的弊端 new Thead(new Runnable(){ @Override public void run() { // TODO Auto-generated metho ...