BZOJ_3589_动态树_容斥原理+树链剖分
BZOJ_3589_动态树_容斥原理+树链剖分
题意:
维护一棵树,支持1.子树内点权加上一个数 2.给出k条链,求路径上的点权和(重复的计算一次) (k<=5)
分析:
可以用树剖+线段树解决第一个操作
然后我们发现k非常小,可以二进制枚举
那就容斥一下转化成求几条链的交
链交求法:链顶是两条链顶深度大的那个,链底是两个链底的lca
如果链底深度小于链顶,就说明两条链没有交集
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 200050
#define LL long long
#define ls p<<1
#define rs p<<1|1
int head[N],to[N<<1],nxt[N<<1],cnt,n,q,xx[10],yy[10];
int fa[N],dep[N],top[N],siz[N],son[N],idx[N],tot,k;
int _count[100],strtop[10],strbot[10];
LL mod=2147483648ll;
LL t[N<<2],add[N<<2];
inline void adde(int u,int v){
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
}
void dfs1(int x,int y){
int i;
fa[x]=y;dep[x]=y+1;
siz[x]=1;
for(i=head[x];i;i=nxt[i]){
if(to[i]!=y){
dfs1(to[i],x);
siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]])son[x]=to[i];
}
}
}
void dfs2(int x,int t){
top[x]=t;idx[x]=++tot;
int i;
if(son[x]) dfs2(son[x],t);
for(i=head[x];i;i=nxt[i]){
if(to[i]!=fa[x]&&to[i]!=son[x]){
dfs2(to[i],to[i]);
}
}
}
void pud(int l,int r,int p){
if(add[p]==0)return ;
add[ls]+=add[p];
add[ls]%=mod;
add[rs]+=add[p];
add[rs]%=mod;
int mid=l+r>>1;
t[ls]+=add[p]*(mid-l+1);
t[ls]%=mod;
t[rs]+=add[p]*(r-mid);
t[rs]%=mod;
add[p]=0;
}
void update(int l,int r,int x,int y,int c,int p){
if(x<=l&&y>=r){
t[p]+=1ll*c*(r-l+1);
add[p]+=c;
t[p]%=mod;
add[p]%=mod;
return ;
}
pud(l,r,p);
int mid=l+r>>1;
if(x<=mid)update(l,mid,x,y,c,ls);
if(y>mid)update(mid+1,r,x,y,c,rs);
t[p]=t[ls]+t[rs];
t[p]%=mod;
}
LL query(int l,int r,int x,int y,int p){
if(x<=l&&y>=r) return t[p];
int mid=l+r>>1;
LL re=0;
pud(l,r,p);
t[p]=t[ls]+t[rs];
t[p]%=mod;
if(x<=mid)re=(re+query(l,mid,x,y,ls))%mod;
if(y>mid)re=(re+query(mid+1,r,x,y,rs))%mod;
return re%mod;
}
LL ask(int x,int y){
LL re=0;
while(top[x]!=top[y]){
if(dep[top[x]]>dep[top[y]])swap(x,y);
re+=query(1,n,idx[top[y]],idx[y],1);
re%=mod;
y=fa[top[y]];
}
if(dep[x]<dep[y])swap(x,y);
return (re+query(1,n,idx[y],idx[x],1))%mod;
}
void fix(int x,int c){
update(1,n,idx[x],idx[x]+siz[x]-1,c,1);
}
int lca(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]>dep[top[y]])swap(x,y);
y=fa[top[y]];
}
return dep[x]<dep[y]?x:y;
}
void solve(){
int mask=(1<<k)-1;
int i,flg,j;
LL ans=0;
for(i=1;i<=k;i++){
if(dep[xx[i]]>dep[yy[i]])swap(xx[i],yy[i]);
strtop[i]=xx[i];strbot[i]=yy[i];
}
for(i=1;i<=mask;i++){
if((_count[i]&1))flg=1;
else flg=-1;
int no_jiao=0;
int top_a=0,bot_a=0;
for(j=1;j<=k;j++){
if(i&(1<<j-1)){
if(!top_a){
top_a=strtop[j];
bot_a=strbot[j];
}
else {
bot_a=lca(bot_a,strbot[j]);
if(dep[top_a]<dep[strtop[j]]){
top_a=strtop[j];
}
if(dep[top_a]>dep[bot_a])no_jiao=1;
}
}
}
if(no_jiao)continue;
ans+=flg*ask(top_a,bot_a);
ans=(ans+mod)%mod;
}
printf("%lld\n",ans);
}
int main(){
scanf("%d",&n);
int i,x,y,opt,j;
for(i=1;i<n;i++){
scanf("%d%d",&x,&y);
adde(x,y);adde(y,x);
}
dfs1(1,0);
dfs2(1,1);
for(i=1;i<=32;i++){
_count[i]=_count[i>>1]+(i&1);
}
scanf("%d",&q);
while(q--){
scanf("%d",&opt);
if(opt){
scanf("%d",&k);
for(j=1;j<=k;j++){
scanf("%d%d",&xx[j],&yy[j]);
}
solve();
}else{
scanf("%d%d",&x,&y);
fix(x,y);
}
}
}
BZOJ_3589_动态树_容斥原理+树链剖分的更多相关文章
- 树的统计Count---树链剖分
NEFU专项训练十和十一——树链剖分 Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t ...
- [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分
题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...
- BZOJ 1036: [ZJOI2008]树的统计Count-树链剖分(点权)(单点更新、路径节点最值、路径求和)模板,超级认真写了注释啊啊啊
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 23015 Solved: 9336[Submit ...
- [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并
永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...
- 3065: 带插入区间K小值_树套树_替罪羊树_权值线段树
经过周六一天,周一3个小时的晚自习,周二2个小时的疯狂debug,终于凭借自己切掉了这道树套树题. Code: #include <cstdio> #include <algorit ...
- 219.01.19 bzoj3252: 攻略(长链剖分+贪心)
传送门 长链剖分好题. 题意:给一棵带点权的树,可以从根节点到任一叶节点走kkk次,走过的点只能计算一次,问kkk次走过的点点权值和最大值. 思路: 考虑将整棵树带权长链剖分,这样链与链之间是不会重复 ...
- 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)
3589: 动态树 Time Limit: 30 Sec Memory Limit: 1024 MBSubmit: 405 Solved: 137[Submit][Status][Discuss] ...
- B20J_3231_[SDOI2014]旅行_树链剖分+线段树
B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...
- [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...
随机推荐
- javascript—Mach的一些常用方法
1.Math.random():返回 0 ~ 1 之间的随机数. 2.Math.round():四舍五入取整. 3.Math.ceil():向上取整; 例如:a=1.2,b=5.8; ...
- 大数据项目中的Oracle查询优化
今天发现自己之前写的一些SQL查询在执行效率方面非常不理想,于是尝试做了些改进. 需求为查询国地税表和税源表中,国税有而税源没有的条目数,之前的查询如下: SELECT COUNT(NAME) FRO ...
- jquery作业
1. 通过jquery动态的创建一个表格,随机生成(id自增,name随机2-3个中文汉字(10个姓,20个名字),age随机100以内整数)大于50小于100行的数据(用户对象:id,name,ag ...
- AngularJS数据绑定中数据监控的机制说明
from : http://docs.angularjs.org/guide/scope When the browser calls into JavaScript the code execute ...
- Bootstrap免费模板站推荐
第一个:http://startbootstrap.com/ 第二个:http://www.bootstrapzero.com/ 第三个:https://bootswatch.com/ 第四个:htt ...
- Codeforces Round #479 (Div. 3) C. Less or Equal
题目地址:http://codeforces.com/contest/977/problem/C 题解:给一串数组,是否找到一个数x,找到k个数字<=x,找到输出x,不能输出-1.例如第二组,要 ...
- java线程之线程通信控制
在上篇我们看到,A线程往公共资源库(对象)提供了一条数据,然后B线程从库中提取了数据并打印出来. 实际项目中,我们不可能只往库中提供一条数据,而且库的大小也不会是无穷大的,那么我们就会有这样一 个需求 ...
- SOFA 源码分析 — 调用方式
前言 SOFARPC 提供了多种调用方式满足不同的场景. 例如,同步阻塞调用:异步 future 调用,Callback 回调调用,Oneway 调用. 每种调用模式都有对应的场景.类似于单进程中的调 ...
- 第四次作业之jieba库的应用
#!/usr/bin/python# -*- coding:utf-8 -*- import imp,sys imp.reload(sys)from matplotlib.font_manager i ...
- tomcat启动报错:Address already in use: JVM_Bind
tomcat启动时出现Address already in use: JVM_Bind 的原因是因为端口被占用,有可能是因为多次启动tomcat或者启动了多个tomcat,或者是其他应用程序或者服务占 ...