51NOD 1227 平均最小公倍数 [杜教筛]
1227 平均最小公倍数
题意:求\(\frac{1}{n} \sum_{i=1}^n lcm(n,i)\)
和的弱化版?
\]
求\(id\cdot \varphi\)的前缀和,卷上\(id\)就行了
我竟然把整除分块打错了,直接i++,gg
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1664512, U=1664510, mo=1e9+7, inv2 = 500000004, inv6 = 166666668;
inline int read(){
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
inline void mod(int &x) {if(x>=mo) x-=mo; else if(x<0) x+=mo;}
bool notp[N]; int p[N/10], phi[N], s[N];
void sieve(int n) {
phi[1]=1; s[1]=1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, phi[i] = i-1;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
notp[i*p[j]] = 1;
if(i%p[j] == 0) {phi[i*p[j]] = (ll) phi[i] * p[j] %mo; break;}
phi[i*p[j]] = (ll) phi[i] * (p[j]-1) %mo;
}
mod(s[i] += s[i-1] + (ll) phi[i] * i %mo);
}
}
namespace ha {
const int p=1001001;
struct meow{int ne, val, r;} e[3000];
int cnt, h[p];
inline void insert(int x, int val) {
int u = x%p;
for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return;
e[++cnt] = (meow){h[u], val, x}; h[u] = cnt;
}
inline int quer(int x) {
int u = x%p;
for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return e[i].val;
return -1;
}
} using ha::insert; using ha::quer;
inline ll sum(ll n) {return n * (n+1) / 2 %mo;}
inline ll sum2(ll n) {return n * (n+1) %mo * (2*n+1) %mo *inv6 %mo;}
int dj_s(int n) { //printf("dj_s %d\n", n);
if(n <= U) return s[n];
if(quer(n) != -1) return quer(n);
int ans = sum2(n), r;
for(int i=2; i<=n; i=r+1) {
r = n/(n/i);
mod(ans -= (ll) (sum(r) - sum(i-1)) * dj_s(n/i) %mo);
}
insert(n, ans);
return ans;
}
int solve(int n) {
int ans=0, r;
for(int i=1; i<=n; i=r+1) {
r = n/(n/i);
mod(ans += (ll) dj_s(n/i) * (r-i+1) %mo);
}
mod(ans += n);
return (ll) ans * inv2 %mo;
}
int l, r;
int main() {
freopen("in", "r", stdin);
sieve(U);
l=read(); r=read();
int ans = solve(r) - solve(l-1); mod(ans);
printf("%d", ans);
}
51NOD 1227 平均最小公倍数 [杜教筛]的更多相关文章
- 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】
以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...
- 51NOD 1220 约数之和 [杜教筛]
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...
- [51Nod 1220] - 约数之和 (杜教筛)
题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑nj=1∑nd(ij) 题目分析 ...
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- [51nod1227]平均最小公倍数(莫比乌斯反演+杜教筛)
题意 求 $\sum_{i=a}^b \sum_{j=1}^i \frac{lcm(i,j)}{i}$. 分析 只需要求出前缀和, $$\begin{aligned}\sum_{i=1}^n \sum ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
- 51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)
题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) ∑i=1n∑j=1nlcm(i,j) =∑i=1n∑j= ...
随机推荐
- Shell菜单脚本
今天在这儿给大家分享一个我简单编写的Shell菜单脚本,傻瓜式的人机交互,人人都可以操作linux. #!/bin/sh #Shell菜单演示 function menu () { cat <& ...
- Spring框架学习笔记(8)——AspectJ实现AOP
使用代理对象实现AOP虽然可以满足需求,但是较为复杂,而Spring提供一种简单的实现AOP的方法AspectJ 同样的计算器的DEMO 首先配置applicationContext.xml < ...
- spring中用到的设计模式
http://www.cnblogs.com/pengmengnan/p/6717766.html 一 : 工厂模式工厂模式主要是为创建对象提供过度接口,以便将创建对象的具体 过程屏蔽隔离起来,达到提 ...
- Python下载、环境变量配置、 模块安装方法
下载 Windows版官网下载地址:https://www.python.org/downloads/windows/ 类似下图以 installer结尾的文件就是我们需要下载的,位数根据自己的电脑进 ...
- thinkphp开发微信公众号时,验证基本配置提示请求url超时
原因在index.php入口文件中必须有define('APP_NAME', 'Weixin'); 服务器url:http://bxu2713700584.my3w.com/Weixin/Index/ ...
- 阿里大鱼 阿里云api
阿里短信服务API接入指南及示例 : https://yq.aliyun.com/articles/59928 =========================================== ...
- JavaScript获取当前url根目录(路径)
jsp: <%@ page language="java" import="java.util.*" pageEncoding="UTF-8&q ...
- mysql 多列索引的生效规则
mysql中 myisam,innodb默认使用的是 Btree索引,至于btree的数据结构是怎样的都不重要,只需要知道结果,既然是索引那这个数据结构最后是排好序:就像新华字典他的目录就是按照a,b ...
- CSS深入理解学习笔记之absolute
1.absolute和float 拥有相同的特性表现: ①包裹性(容器应用之后,可以包裹里面的内容): <!doctype html> <html> <head> ...
- CSDN博客测试目录
经常写博客,但是一般没怎么注意些目录,最近看别人写的博客都有目录,所以我也想在以后写好目录,这样子也方便阅读. 这里就写一个实验: 这里一级目录 这里是一级目录下的文本.林肯公园 这里是1.1目录 这 ...