Recovering Low-Rank Matrices From Few Coefficients In Any Basis
Recovering Low-Rank Matrices From Few Coefficients In Any Basis-David Gross
引
依旧是一个重构矩阵的问题,这篇论文的符号有些奇怪,注意一下。假设有一个矩阵\(\rho \in \mathbb{R}^{n \times n}\),其秩为\(r \ll n\)。有一组基\(w_a, a=1,\ldots, n^2\),是已知的。假设我们观测到的是,一组内积\(\{ (\rho, w_a) | a \in \Omega \}\),其中\((\rho, w_a) = tr(\rho^{\dagger}w_a)\),\(\rho^{\dagger}\)表示\(\rho\)的共轭转置。在这些条件下,我们是否能够从\(\{ (\rho, w_a) | a \in \Omega \}\)中恢复出\(\rho\)。
一些符号说明:
\(\|\rho\|_1\)为\(\rho\)的奇异值之和,即此为矩阵核范数。
\(\|\rho\|_2\)为\(\rho\)的F范数,而非一般符号代表的谱范数。
\(\|\rho\|\)为\(\rho\)的谱范数。
作者强调,这个问题,是可以办到的,不过其基需要满足一个coherence条件:

且\(\rho^{\dagger} = \rho\),即\(\rho\)为酉矩阵(不过作者提到,似乎\(\rho\)即便不满足此条件,也可以通过一种转化来求解)。
主要结果
作者通过求解下述问题来恢复矩阵\(\rho\):

需要指明的一点是,如果\((\rho, w_a),a \in \Omega\)中大部分为0,那么想要恢复出\(\rho\)是非常困难的(因为这意味着我们可用的信息非常少)。
定理2,3
下为定理2,其中的标准基为:\(\{e_i e_j^{\dagger}\}_{i,j=1}^n\),即仅有\(i\)行\(j\)列元素为1,其余均为0的\(n \times n\)矩阵所构成的基。

作者的结论更为一般,可以拓展到任意的基:

定理4
接下来还有定理4:

定理4针对的是一种特殊的基——Fourier-type基,介绍此的原因是,作者先证明此定理,再通过一些转换来证明定理3的。
直观解释
作者通过俩幅图,给出了一些直观的解释。

先来看(a)。我们可以将整个线性空间分成\(\Omega\)和\(\Omega^{\bot}\)。因为我们已有的信息是\(\Omega\),问题(1)中满足约束的矩阵\(\sigma\)在空间中形成一个超平面,即图中的\(A\),而我们所期望的\(\rho\)是其中的一点。
再来看(b),因为我们希望的是\(\rho\)是问题(1)的最优解,最好还是唯一的。如果真的如此,那么\(B = \{\sigma | \|\sigma\|_1 \le \|\rho\|_1\}\)这个集合只能在平面\(A\)的上方或者下方,实际上,就是平面A是\(B\)的支撑超平面,其支撑点为\(\rho\)。
当然,这个性质并没有这么容易达成,其等价于要满足:
\[
\|\rho + \Delta\|_1 \ge \|\rho\|_1
\]
对于\(A\)中任意的点\(\rho + \Delta \neq \rho\)成立。但是呢,直接证明是困难的,所以作者寻求一个对偶条件即下式:
\[
\|\rho + \Delta\|_1 > \|\rho\|_1 + (Y, \Delta),\Delta \neq 0
\]
关于某个\(Y\)成立,而且\(Y\)必须与超平面\(A\)垂直。这个\(Y\)能否找到,就是\(\rho\)能否恢复的关键。
Recovering Low-Rank Matrices From Few Coefficients In Any Basis的更多相关文章
- Generalized Low Rank Approximation of Matrices
Generalized Low Rank Approximations of Matrices JIEPING YE*jieping@cs.umn.edu Department of Computer ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- 矩阵分解(rank decomposition)文章代码汇总
矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
随机推荐
- Android进阶之光-第1章-Android新特性-读书笔记
第 1 章 Android 新特性 1.1 Android 5.0 新特性 1.1.1 Android 5.0 主要新特性 1. 全新的 Material Design 新风格 Material De ...
- Tampermonkey还你一个干净整洁的上网体验
作为一个前端开发,平时难免要经常浏览一些博客.技术网站,学习新的技术或者寻找解决方案,可能更多是ctrl+c和ctrl+v(^_^|||),但是目前很多网站的布局以及广告对于我们阅读文章造成了很多的障 ...
- pip安装python库时使用国内镜像资源加速下载过程
pip默认安装包是从网站https://pypi.org/simple下载,我们可以将其改成国内的镜像网站,加速下载过程,下面以安装numpy库为例: pip install -i https://p ...
- vue初始化项目,构建vuex的后台管理项目架子
构架vuex的后台管理项目源码:https://github.com/saucxs/structure-admin-web 一.node安装 可以参考这篇文章http://www.mwcxs.top/ ...
- cAdvisor+Prometheus+Grafana监控docker
cAdvisor+Prometheus+Grafana监控docker 一.cAdvisor(需要监控的主机都要安装) 官方地址:https://github.com/google/cadvisor ...
- Kubernetes的DaemonSet(上篇)
背景 静儿作为美团容器化团队HULK的一员,经常需要和Kubernetes(k8s)打交道.第一次登陆node(宿主机)的时候,发现连续登陆几台都看到了Prometheus-Node-Exporter ...
- 大名鼎鼎的Requests库用了什么编码风格?
原文:https://www.kennethreitz.org/essays/kenneth-reitzs-code-style 作者:Kenneth Reitz 原题:Kenneth Reitz’s ...
- Java 集合详解
一.集合的由来 通常,我们的程序需要根据程序运行时才知道创建多少个对象.但若非程序运行,程序开发阶段,我们根本不知道到底需要多少个数量的对象,甚至不知道它的准确类型.为了满足这些常规的编程需要,我们要 ...
- Linux文本三剑客超详细教程---grep、sed、awk
awk.grep.sed是linux操作文本的三大利器,合称文本三剑客,也是必须掌握的linux命令之一.三者的功能都是处理文本,但侧重点各不相同,其中属awk功能最强大,但也最复杂.grep更适合单 ...
- 关于PHP打开之后找不到数据库问题的记录
昨天发现了一个奇怪的问题,一直正常使用的某个网站打不开了,这个网站是PHP写的,数据库用的my sql.打开之后就提示密码错误,无法正常打开页面. 由于平时基本上没用过my sql,按照使用sql s ...