线性回归及sgd/bgd的介绍:

监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)

训练数据形式:          (第一列代表x1,第二列代表 x2,第三列代表 数据标签 用 0/1表示)

训练函数形式:            y = sigmod(w0+w1*x1+w2*x2)

通过训练函数就能够得到参数列向量θ([θ0,θ1,…θn]^T),当输入样本列向量x([x0,x1,…,xn]),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就可以说样本是正样本,否则样本是负样本。

利用训练函数进行分类: 输入如果(x1,x2),利用训练函数得到 y值,如果y>0.5 返回1 ,否则返回 0。

1. Sigmoid 函数

为了将连续的数值转化为 二进制的0/1,机器学习中一般引入Sigmoid函数,该函数的形式如下:

对应的函数图像:

可以看出它的两个极值就是 0 /1 所以可以很好的将连续之映射为二分类。

Sigmoid函数有一个很棒的特点是它的导数 f′(x) = f(x)(1−f(x))

那么如何通过训练数据得到目标sigmoid函数(训练函数计算过程原理)

Logistic回归及梯度上升算法

2. sigmoid函数+logigstic 解决二分类问题

通过上图中的数据源计算目标函数,并通过目标函数对未知数据进行二分类

数据加载:

def loadDataSet():
dataMat = []; labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat

批梯度上升算法

def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn, classLabels):
# 输入训练数据
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
# 输入训练数据的标签(0 / 1)
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
m,n = shape(dataMatrix)
# 训练步长 (越大则收敛的速度)
alpha = 0.001
# 最大迭代次数
maxCycles = 500
# 训练函数的系数(为需要求解的结果)
weights = ones((n,1))
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
# 梯度上升算法的 迭代 算法

weights = weights + alpha * dataMatrix.transpose()* error #matrix mult

    return weights

随机梯度上升算法

由于批梯度算法每次迭代都需要将所有的训练数据进行计算,所以它的运行效率并不高。

而随机梯度上升算法每次迭代只是将一个训练数据进行迭代所以效率很高。

它们的数据源是一样的。

def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) #initialize to all ones
for i in range(m):
#每次迭代只需要一个训练数据
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h

weights = weights + alpha * error * dataMatrix[i]

    return weights

参考:

监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)

梯度上升算法解释: https://blog.csdn.net/szm21c11u68n04vdclmj/article/details/78221784

https://blog.csdn.net/u011197534/article/details/53492915?utm_source=itdadao&utm_medium=referral

《机器学习实战》

监督学习——logistic进行二分类(python)的更多相关文章

  1. Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)

    一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X5 ...

  2. logistic regression二分类算法推导

  3. 逻辑回归(Logistic Regression)二分类原理及python实现

    本文目录: 1. sigmoid function (logistic function) 2. 逻辑回归二分类模型 3. 神经网络做二分类问题 4. python实现神经网络做二分类问题 1. si ...

  4. 【原】Spark之机器学习(Python版)(二)——分类

    写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋( ...

  5. 二分类模型之logistic

    liner classifiers 逻辑回归用在2分类问题上居多.它是一个非线性的回归模型,其最大的好处恰恰是可以解决二元类问题,目前在金融行业,基本都是使用Logistic回归来预判一个用户是否为好 ...

  6. 二分类Logistic回归模型

    Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量 ...

  7. matlab-逻辑回归二分类(Logistic Regression)

    逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/7811321 ...

  8. Python深度学习案例1--电影评论分类(二分类问题)

    我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用 ...

  9. Python深度学习读书笔记-6.二分类问题

    电影评论分类:二分类问题   加载 IMDB 数据集 from keras.datasets import imdb (train_data, train_labels), (test_data, t ...

随机推荐

  1. P1352 没有上司的舞会

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  2. InnoDB的4个特性

    innodb 的四个特性 insert buffer innodb使用insert buffer"欺骗"数据库:对于为非唯一索引,辅助索引的修改操作并非实时更新索引的叶子页,而是把 ...

  3. springboot + mybatis 前后端分离项目的搭建 适合在学习中的大学生

    人生如戏,戏子多半掉泪! 我是一名大四学生,刚进入一家软件件公司实习,虽说在大学中做过好多个实训项目,都是自己完成,没有组员的配合.但是在这一个月的实习中,我从以前别人教走到了现在的自学,成长很多. ...

  4. Sending forms through JavaScript

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_forms_through_JavaScript As in the ...

  5. C语言编对双精度数保留一位小数

    /*第一题*/ #include<stdio.h> //输入1.2345 输出1.2000 //输入1.2547 输出1.3000 main(){ ; printf("请输入:\ ...

  6. Ubuntu16.04下安装Hadoop

    一.记录理由 刚开始只是想要学习怎么使用Hive的.想着安装应该很简单,没想到花了整整一天的时间来安装,为了避免下次犯同样的错误,特此记录. 二.安装Hadoop 网上教你怎么安装Hadoop的文章有 ...

  7. nginx安装配置+集群tomcat:Centos和windows环境

    版本:nginx-1.8.0.tar.gz 官网:http://nginx.org/en/download.html         版本:apache-tomcat-6.0.44.tar.gz  官 ...

  8. java运行机制、Jdk版本及Java环境变量

    一.语言特性 计算机高级语言按程序的执行方式可分为:编译型和解释型两种.编译型的语言是指使用专门的编译器,针对特定的平台(操作系统)一次性翻译成被该平台硬件执行的机器码,并包装成该平台可执行性程序文件 ...

  9. java中你不知道的字符串知识!!!

    声明:这是上次写完String和StringBuffer后的补充(看上次的请复制链接在搜索栏粘贴访问) 链接:http://www.cnblogs.com/ytsbk/p/7420581.html 一 ...

  10. jQuery事件处理了解一下

    >>> JQuery 事件处理 一.事件绑定方式 1.事件绑定的快捷方式: 缺点:绑定的事件,无法取消 $("button:eq(0)").dblclick(fu ...