在云计算环境中,很多时候需要用它其他机器的计算资源,我们有可能会在接收到Message进行处理时,会把一部分计算任务分配到其他节点来完成。那么,RabbitMQ如何使用RPC呢?在本篇文章中,我们将会通过其它节点求来斐波纳契完成示例。

1. 客户端接口 Client interface

为了展示一个RPC服务是如何使用的,我们将创建一段很简单的客户端class。 它将会向外提供名字为call的函数,这个call会发送RPC请求并且阻塞知道收到RPC运算的结果。代码如下:

fibonacci_rpc = FibonacciRpcClient()
result = fibonacci_rpc.call(4)
print "fib(4) is %r" % (result,)

2. 回调函数队列 Callback queue

总体来说,在RabbitMQ进行RPC远程调用是比较容易的。client发送请求的Message然后server返回响应结果。为了收到响应client在publish message时需要提供一个”callback“(回调)的queue地址。code如下:

result = channel.queue_declare(exclusive=True)
callback_queue = result.method.queue channel.basic_publish(exchange='',
routing_key='rpc_queue',
properties=pika.BasicProperties(
reply_to = callback_queue,
),
body=request) # ... and some code to read a response message from the callback_queue ...

2.1 Message properties

AMQP 预定义了14个属性。它们中的绝大多很少会用到。以下几个是平时用的比较多的:

  • delivery_mode: 持久化一个Message(通过设定值为2)。其他任意值都是非持久化。请移步RabbitMQ消息队列(三):任务分发机制
  • content_type: 描述mime-type 的encoding。比如设置为JSON编码:设置该property为application/json。
  • reply_to: 一般用来指明用于回调的queue(Commonly used to name a callback queue)。
  • correlation_id: 在请求中关联处理RPC响应(correlate RPC responses with requests)。

3. 相关id Correlation id

在上个小节里,实现方法是对每个RPC请求都会创建一个callback queue。这是不高效的。幸运的是,在这里有一个解决方法:为每个client创建唯一的callback queue。

这又有其他问题了:收到响应后它无法确定是否是它的,因为所有的响应都写到同一个queue了。上一小节的correlation_id在这种情况下就派上用场了:对于每个request,都设置唯一的一个值,在收到响应后,通过这个值就可以判断是否是自己的响应。如果不是自己的响应,就不去处理。

4. 总结

工作流程:

  • 当客户端启动时,它创建了匿名的exclusive callback queue.
  • 客户端的RPC请求时将同时设置两个properties: reply_to设置为callback queue;correlation_id设置为每个request一个独一无二的值.
  • 请求将被发送到an rpc_queue queue.
  • RPC端或者说server一直在等待那个queue的请求。当请求到达时,它将通过在reply_to指定的queue回复一个message给client。
  • client一直等待callback queue的数据。当message到达时,它将检查correlation_id的值,如果值和它request发送时的一致那么就将返回响应。

5. 最终实现

The code for rpc_server.py:

#!/usr/bin/env python
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost')) channel = connection.channel() channel.queue_declare(queue='rpc_queue') def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n-1) + fib(n-2) def on_request(ch, method, props, body):
n = int(body) print " [.] fib(%s)" % (n,)
response = fib(n) ch.basic_publish(exchange='',
routing_key=props.reply_to,
properties=pika.BasicProperties(correlation_id = \
props.correlation_id),
body=str(response))
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue') print " [x] Awaiting RPC requests"
channel.start_consuming()

The server code is rather straightforward:

  • (4) As usual we start by establishing the connection and declaring the queue.
  • (11) We declare our fibonacci function. It assumes only valid positive integer input. (Don't expect this one to work for big numbers, it's probably the slowest recursive implementation possible).
  • (19) We declare a callback for basic_consume, the core of the RPC server. It's executed when the request is received. It does the work and sends the response back.
  • (32) We might want to run more than one server process. In order to spread the load equally over multiple servers we need to set theprefetch_count setting.

The code for rpc_client.py:

#!/usr/bin/env python
import pika
import uuid class FibonacciRpcClient(object):
def __init__(self):
self.connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost')) self.channel = self.connection.channel() result = self.channel.queue_declare(exclusive=True)
self.callback_queue = result.method.queue self.channel.basic_consume(self.on_response, no_ack=True,
queue=self.callback_queue) def on_response(self, ch, method, props, body):
if self.corr_id == props.correlation_id:
self.response = body def call(self, n):
self.response = None
self.corr_id = str(uuid.uuid4())
self.channel.basic_publish(exchange='',
routing_key='rpc_queue',
properties=pika.BasicProperties(
reply_to = self.callback_queue,
correlation_id = self.corr_id,
),
body=str(n))
while self.response is None:
self.connection.process_data_events()
return int(self.response) fibonacci_rpc = FibonacciRpcClient() print " [x] Requesting fib(30)"
response = fibonacci_rpc.call(30)
print " [.] Got %r" % (response,)

The client code is slightly more involved:

  • (7) We establish a connection, channel and declare an exclusive 'callback' queue for replies.
  • (16) We subscribe to the 'callback' queue, so that we can receive RPC responses.
  • (18) The 'on_response' callback executed on every response is doing a very simple job, for every response message it checks if thecorrelation_id is the one we're looking for. If so, it saves the response inself.response
    and breaks the consuming loop.
  • (23) Next, we define our main call method - it does the actual RPC request.
  • (24) In this method, first we generate a unique correlation_id number and save it - the 'on_response' callback function will use this value to catch the appropriate response.
  • (25) Next, we publish the request message, with two properties:
    reply_to and correlation_id.
  • (32) At this point we can sit back and wait until the proper response arrives.
  • (33) And finally we return the response back to the user.

开始rpc_server.py:

$ python rpc_server.py
[x] Awaiting RPC requests

通过client来请求fibonacci数:

$ python rpc_client.py
[x] Requesting fib(30)

现在这个设计并不是唯一的,但是这个实现有以下优势:

  • 如何RPC server太慢,你可以扩展它:启动另外一个RPC server。
  • 在client端, 无所进行加锁能同步操作,他所作的就是发送请求等待响应。

我们的code还是挺简单的,并没有尝试去解决更复杂和重要的问题,比如:

  • 如果没有server在运行,client需要怎么做?
  • RPC应该设置超时机制吗?
  • 如果server运行出错并且抛出了异常,需要将这个问题转发到client吗?
  • 需要边界检查吗?

尊重原创,转载请注明出处 anzhsoft: http://blog.csdn.net/anzhsoft/article/details/19633107

参考资料:

1. http://www.rabbitmq.com/tutorials/tutorial-six-python.html

RabbitMQ消息队列(七):适用于云计算集群的远程调用(RPC)的更多相关文章

  1. (转)RabbitMQ消息队列(七):适用于云计算集群的远程调用(RPC)

    在云计算环境中,很多时候需要用它其他机器的计算资源,我们有可能会在接收到Message进行处理时,会把一部分计算任务分配到其他节点来完成.那么,RabbitMQ如何使用RPC呢?在本篇文章中,我们将会 ...

  2. RabbitMQ 适用于云计算集群的远程调用(RPC)

    在云计算环境中,很多时候需要用它其他机器的计算资源,我们有可能会在接收到Message进行处理时,会把一部分计算任务分配到其他节点来完成.那么,RabbitMQ如何使用RPC呢?在本篇文章中,我们将会 ...

  3. 物联网微消息队列MQTT介绍-EMQX集群搭建以及与SpringBoot整合

    项目全部代码地址:https://github.com/Tom-shushu/work-study.git (mqtt-emqt 项目) 先看我们最后实现的一个效果 1.手机端向主题 topic111 ...

  4. (十)RabbitMQ消息队列-高可用集群部署实战

    原文:(十)RabbitMQ消息队列-高可用集群部署实战 前几章讲到RabbitMQ单主机模式的搭建和使用,我们在实际生产环境中出于对性能还有可用性的考虑会采用集群的模式来部署RabbitMQ. Ra ...

  5. (七)RabbitMQ消息队列-通过fanout模式将消息推送到多个Queue中

    原文:(七)RabbitMQ消息队列-通过fanout模式将消息推送到多个Queue中 前面第六章我们使用的是direct直连模式来进行消息投递和分发.本章将介绍如何使用fanout模式将消息推送到多 ...

  6. 使用EasyNetQ组件操作RabbitMQ消息队列服务

    RabbitMQ是一个由erlang开发的AMQP(Advanved Message Queue)的开源实现,是实现消息队列应用的一个中间件,消息队列中间件是分布式系统中重要的组件,主要解决应用耦合, ...

  7. RabbitMQ消息队列(四)-服务详细配置与日常监控管理

    RabbitMQ服务管理 启动服务:rabbitmq-server -detached[ /usr/local/rabbitmq/sbin/rabbitmq-server -detached ] 查看 ...

  8. rabbitMQ消息队列1

    rabbitmq 消息队列 解耦 异步 优点:解决排队问题 缺点: 不能保证任务被及时的执行 应用场景:去哪儿, 同步 优点:保证任务被及时的执行 缺点:排队问题 大并发 Web nginx 1000 ...

  9. RabbitMQ 消息队列 应用

    安装参考    详细介绍   学习参考 RabbitMQ 消息队列 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. M ...

随机推荐

  1. jvm 指令集代码

    指令码 助记符 说明 0x00 nop 什么都不做 0x01 aconst_null 将null推送至栈顶 0x02 iconst_m1 将int型-1推送至栈顶 0x03 iconst_0 将int ...

  2. Java自定义注解的实现

    Java自定义注解的实现,总共三步(eg.@RandomlyThrowsException): 1.首先编写一个自定义注解@RandomlyThrowsException package com.gi ...

  3. Python小代码_12_生成前 n 行杨辉三角

    def demo(t): print([1]) print([1, 1]) line = [1, 1] for i in range(2, t): r = [] for j in range(0, l ...

  4. 使用CSS让多出来的字变为省略号

    <style> .text1 { width:200px; overflow:hidden; text-overflow:ellipsis; -o-text-overflow:ellips ...

  5. docker volume创建、备份、nfs存储

    docker存储volume #环境 centos7.4 , Docker version 17.12.0-ce docker volume创建.备份.nfs存储 #docker volume 数据存 ...

  6. AbstractQueuedSynchronizer源码解读

    1. 背景 AQS(java.util.concurrent.locks.AbstractQueuedSynchronizer)是Doug Lea大师创作的用来构建锁或者其他同步组件(信号量.事件等) ...

  7. Android Design Support Library使用详解——Snackbar

    Google在2015 I/O大会上,给我们带来了更加详细的Material Design规范,同时也引入了Android Design Support Library,为我们提供了基于Materia ...

  8. MyEclipse中查看struts_spring_hibernate源码

    1.spring查看源码 首先下载对应的源码包 如:spring-framework-2.5.6-with-dependencies.zip   打开spring-framework-2.5.6\di ...

  9. 用premake5创建lua532工程

    用premake5创建lua532工程 (金庆的专栏) lua-5.3.2只有Makefile,根据readme.html中"Building Lua on other systems&qu ...

  10. CentOS6.7 下安装JDK

    第一步:从官网上下载rpm版本的jdk文件. 第二步:安装JDK 执行命令rpm    -ivh    jdk-8u73-linux-i586.rpm 至此,JDK安装完成,我们来看下JDK的安装目录 ...