转自:http://lxw1234.com/archives/2015/04/176.htm,Hive分析窗口函数(一) SUM,AVG,MIN,MAX

之前看到大数据田地有关于max()over(partition by)的用法,今天恰好工作中用到了它,但是使用中遇到了一个问题:在max(rsrp)over(partition by buildingid,height) as max_rsrp返回的结果不是分组中的最大值。最中找到了问题的原因:max_rsrp数据类型为string而不是double类型,导致的一个bug问题。

再处理的过程中也再次把大数据田地的中关于sum,avg,max,min的函数用法做了demo,因此有了该参考后的文章。

数据准备:

echo ''>data_file.txt
vim data_file.txt
cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,6
cookie2,2015-04-11,5
cookie2,2015-04-12,7
cookie2,2015-04-13,4
cookie2,2015-04-14,3
cookie2,2015-04-15,5
cookie2,2015-04-16,5
hadoop fs -rm -r /user/jrf/test_data
hadoop fs -mkdir /user/jrf/test_data
hadoop fs -copyFromLocal data_file.txt /user/jrf/test_data/
drop table if exists test_data;
create EXTERNAL TABLE test_data (
cookieid string,
createtime string, --day
pv INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/user/jrf/test_data/';
select * from test_data;
+---------------------+-----------------------+---------------+--+
| test_data.cookieid | test_data.createtime | test_data.pv |
+---------------------+-----------------------+---------------+--+
| cookie1 | 2015-04-10 | 1 |
| cookie1 | 2015-04-11 | 5 |
| cookie1 | 2015-04-12 | 7 |
| cookie1 | 2015-04-13 | 3 |
| cookie1 | 2015-04-14 | 2 |
| cookie1 | 2015-04-15 | 4 |
| cookie1 | 2015-04-16 | 4 |
| cookie2 | 2015-04-10 | 6 |
| cookie2 | 2015-04-11 | 5 |
| cookie2 | 2015-04-12 | 7 |
| cookie2 | 2015-04-13 | 4 |
| cookie2 | 2015-04-14 | 3 |
| cookie2 | 2015-04-15 | 5 |
| cookie2 | 2015-04-16 | 5 |
+---------------------+-----------------------+---------------+--+

SUM — 注意,结果和ORDER BY相关,默认为升序

SELECT cookieid,createtime,pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 26 | 1 | 6 | 26 |
| cookie1 | 2015-04-11 | 5 | 6 | 6 | 26 | 6 | 13 | 25 |
| cookie1 | 2015-04-12 | 7 | 13 | 13 | 26 | 13 | 16 | 20 |
| cookie1 | 2015-04-13 | 3 | 16 | 16 | 26 | 16 | 18 | 13 |
| cookie1 | 2015-04-14 | 2 | 18 | 18 | 26 | 17 | 21 | 10 |
| cookie1 | 2015-04-15 | 4 | 22 | 22 | 26 | 16 | 20 | 8 |
| cookie1 | 2015-04-16 | 4 | 26 | 26 | 26 | 13 | 13 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 35 | 6 | 11 | 35 |
| cookie2 | 2015-04-11 | 5 | 11 | 11 | 35 | 11 | 18 | 29 |
| cookie2 | 2015-04-12 | 7 | 18 | 18 | 35 | 18 | 22 | 24 |
| cookie2 | 2015-04-13 | 4 | 22 | 22 | 35 | 22 | 25 | 17 |
| cookie2 | 2015-04-14 | 3 | 25 | 25 | 35 | 19 | 24 | 13 |
| cookie2 | 2015-04-15 | 5 | 30 | 30 | 35 | 19 | 24 | 10 |
| cookie2 | 2015-04-16 | 5 | 35 | 35 | 35 | 17 | 17 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
pv2: 同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,14号=14号+15号+16号=2+4+4=10

如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点

–其他AVG,MIN,MAX,和SUM用法一样。

--AVG
SELECT cookieid,createtime,pv,
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
AVG(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
| cookie1 | 2015-04-10 | 1 | 1.0 | 1.0 | 3.7142857142857144 | 1.0 | 3.0 | 3.7142857142857144 |
| cookie1 | 2015-04-11 | 5 | 3.0 | 3.0 | 3.7142857142857144 | 3.0 | 4.333333333333333 | 4.166666666666667 |
| cookie1 | 2015-04-12 | 7 | 4.333333333333333 | 4.333333333333333 | 3.7142857142857144 | 4.333333333333333 | 4.0 | 4.0 |
| cookie1 | 2015-04-13 | 3 | 4.0 | 4.0 | 3.7142857142857144 | 4.0 | 3.6 | 3.25 |
| cookie1 | 2015-04-14 | 2 | 3.6 | 3.6 | 3.7142857142857144 | 4.25 | 4.2 | 3.3333333333333335 |
| cookie1 | 2015-04-15 | 4 | 3.6666666666666665 | 3.6666666666666665 | 3.7142857142857144 | 4.0 | 4.0 | 4.0 |
| cookie1 | 2015-04-16 | 4 | 3.7142857142857144 | 3.7142857142857144 | 3.7142857142857144 | 3.25 | 3.25 | 4.0 |
| cookie2 | 2015-04-10 | 6 | 6.0 | 6.0 | 5.0 | 6.0 | 5.5 | 5.0 |
| cookie2 | 2015-04-11 | 5 | 5.5 | 5.5 | 5.0 | 5.5 | 6.0 | 4.833333333333333 |
| cookie2 | 2015-04-12 | 7 | 6.0 | 6.0 | 5.0 | 6.0 | 5.5 | 4.8 |
| cookie2 | 2015-04-13 | 4 | 5.5 | 5.5 | 5.0 | 5.5 | 5.0 | 4.25 |
| cookie2 | 2015-04-14 | 3 | 5.0 | 5.0 | 5.0 | 4.75 | 4.8 | 4.333333333333333 |
| cookie2 | 2015-04-15 | 5 | 5.0 | 5.0 | 5.0 | 4.75 | 4.8 | 5.0 |
| cookie2 | 2015-04-16 | 5 | 5.0 | 5.0 | 5.0 | 4.25 | 4.25 | 5.0 |
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
--MIN
SELECT cookieid,createtime,pv,
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2,--从起点到当前行,结果同pv1
MIN(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| cookie1 | 2015-04-11 | 5 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-12 | 7 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-13 | 3 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-14 | 2 | 1 | 1 | 1 | 2 | 2 | 2 |
| cookie1 | 2015-04-15 | 4 | 1 | 1 | 1 | 2 | 2 | 4 |
| cookie1 | 2015-04-16 | 4 | 1 | 1 | 1 | 2 | 2 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 3 | 6 | 5 | 3 |
| cookie2 | 2015-04-11 | 5 | 5 | 5 | 3 | 5 | 5 | 3 |
| cookie2 | 2015-04-12 | 7 | 5 | 5 | 3 | 5 | 4 | 3 |
| cookie2 | 2015-04-13 | 4 | 4 | 4 | 3 | 4 | 3 | 3 |
| cookie2 | 2015-04-14 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| cookie2 | 2015-04-15 | 5 | 3 | 3 | 3 | 3 | 3 | 5 |
| cookie2 | 2015-04-16 | 5 | 3 | 3 | 3 | 3 | 3 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
--MAX
SELECT cookieid,createtime,pv,
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 7 | 1 | 5 | 7 |
| cookie1 | 2015-04-11 | 5 | 5 | 5 | 7 | 5 | 7 | 7 |
| cookie1 | 2015-04-12 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| cookie1 | 2015-04-13 | 3 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-14 | 2 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-15 | 4 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-16 | 4 | 7 | 7 | 7 | 4 | 4 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 7 | 6 | 6 | 7 |
| cookie2 | 2015-04-11 | 5 | 6 | 6 | 7 | 6 | 7 | 7 |
| cookie2 | 2015-04-12 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| cookie2 | 2015-04-13 | 4 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-14 | 3 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-15 | 5 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-16 | 5 | 7 | 7 | 7 | 5 | 5 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+ SELECT cookieid,
createtime,
pv,
min(pv) OVER(PARTITION BY cookieid) AS min_pv,
max(pv) OVER(PARTITION BY cookieid) AS max_pv
FROM test_data;
+-----------+-------------+-----+---------+---------+--+
| cookieid | createtime | pv | min_pv | max_pv |
+-----------+-------------+-----+---------+---------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 7 |
| cookie1 | 2015-04-16 | 4 | 1 | 7 |
| cookie1 | 2015-04-15 | 4 | 1 | 7 |
| cookie1 | 2015-04-14 | 2 | 1 | 7 |
| cookie1 | 2015-04-13 | 3 | 1 | 7 |
| cookie1 | 2015-04-12 | 7 | 1 | 7 |
| cookie1 | 2015-04-11 | 5 | 1 | 7 |
| cookie2 | 2015-04-16 | 5 | 3 | 7 |
| cookie2 | 2015-04-15 | 5 | 3 | 7 |
| cookie2 | 2015-04-14 | 3 | 3 | 7 |
| cookie2 | 2015-04-13 | 4 | 3 | 7 |
| cookie2 | 2015-04-12 | 7 | 3 | 7 |
| cookie2 | 2015-04-11 | 5 | 3 | 7 |
| cookie2 | 2015-04-10 | 6 | 3 | 7 |
+-----------+-------------+-----+---------+---------+--+

Hive函数:SUM,AVG,MIN,MAX的更多相关文章

  1. Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive中提供了越来越多的分析函数,用于完成负责的统计分析.抽时间将所有的分析窗 ...

  2. Hive学习之路 (十三)Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    数据准备 数据格式 cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, 创建数据库及表 create datab ...

  3. MybatisPlus Lambda表达式 聚合查询 分组查询 COUNT SUM AVG MIN MAX GroupBy

    一.序言 众所周知,MybatisPlus在处理单表DAO操作时非常的方便.在处理多表连接连接查询也有优雅的解决方案.今天分享MybatisPlus基于Lambda表达式优雅实现聚合分组查询. 由于视 ...

  4. C# 中奇妙的函数–6. 五个序列聚合运算(Sum, Average, Min, Max,Aggregate)

    今天,我们将着眼于五个用于序列的聚合运算.很多时候当我们在对序列进行操作时,我们想要做基于这些序列执行某种汇总然后,计算结果. Enumerable 静态类的LINQ扩展方法可以做到这一点 .就像之前 ...

  5. SQL模糊查询,sum,AVG,MAX,min函数

    cmd mysql -hlocalhost -uroot -p select * from emp where ename like '___' -- 三个横线, - 代表字符,可以查询 三个enam ...

  6. 三、函数 (SUM、MIN、MAX、COUNT、AVG)

    第八章 使用数据处理函数 8.1 函数 SQL支持利用函数来处理数据.函数一般是在数据上执行的,给数据的转换和处理提供了方便. 每一个DBMS都有特定的函数.只有少数几个函数被所有主要的DBMS等同的 ...

  7. LINQ to SQL Count/Sum/Min/Max/Avg Join

    public class Linq { MXSICEDataContext Db = new MXSICEDataContext(); // LINQ to SQL // Count/Sum/Min/ ...

  8. LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg

    LINQ  to SQL 语句(3) 之  Count/Sum/Min/Max/Avg [1] Count/Sum 讲解 [2] Min 讲解 [3] Max 讲解 [4] Average 和 Agg ...

  9. [转]LINQ语句之Select/Distinct和Count/Sum/Min/Max/Avg

    在讲述了LINQ,顺便说了一下Where操作,这篇开始我们继续说LINQ语句,目的让大家从语句的角度了解LINQ,LINQ包括LINQ to Objects.LINQ to DataSets.LINQ ...

随机推荐

  1. 【Django】Web应用开发经由

    [Django开发经由] 本来以为看完网上的入门教程之后就可以看书详细学习一下,没想到手头上的这本书也讲得不是太详细..无奈,不过好在这本书从无到有建立一个网站的流程还算可以,就以这个角度简单记录一下 ...

  2. 【Linux】 升级CentOS6的内核到3.10

    升级内核 最近有一些虚拟机,想装Dokcer,但是实验之后发现Docker基本上只在3.0以上的linux内核版本中才能稳定运行.所以就面临着把CentOS6的2.6内核升级到3.0以上.下面提供两种 ...

  3. django “如何”系列4:如何编写自定义模板标签和过滤器

    django的模板系统自带了一系列的内建标签和过滤器,一般情况下可以满足你的要求,如果觉得需更精准的模板标签或者过滤器,你可以自己编写模板标签和过滤器,然后使用{% load %}标签使用他们. 代码 ...

  4. 设计模式 --> (5)适配器模式

    适配器模式 适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本接口不匹配而无法在一起工作的两个类能够在一起工作.比如说我的hp笔记本,美国产品,人家美国的电压是110V的,而我们中国的 ...

  5. Repository个人实践

    1.背景 最近,有空了,想着把之前一些乱七八糟的小项目给整理一下,尤其是涉及到Repository.UoW几处.为此,专门查阅了博客园中几个大神 关于Repository的实践,到最后都感觉依然莫衷一 ...

  6. 20155214&20155216 实验一 开发化境的熟悉

    20155214&20155216 实验一 开发化境的熟悉 实验内容: 实验一 开发化境的熟悉-1-交叉编译环境-(使用实验室台式机) 1.建立实验目录"mkdir linux_组员 ...

  7. Python 远程部署 Fabric

    参考文章:http://zmrenwu.com/post/21/ Fabric是一个Python的库,它提供了丰富的同SSH交互的接口,可以用来在本地或远程机器上自动化.流水化地执行Shell命令.因 ...

  8. hashlib 加密

    import hashlib def md5(args): hash = hashlib.md5(bytes('aaadf',encoding='utf-8')) hash.update(bytes( ...

  9. initializer element is not a compile-time constant

    初始化一个全局变量或static变量时,只能用常量赋值,不能用变量赋值! 如下就会报这个错误(KUIScreenWidth)是变量 static CGFloat const topButtonWidt ...

  10. Struts2之配置文件中Action的详细配置(续)

    承接上一篇 4.处理结果的配置 Action类的实例对象调用某个方法,处理完用户请求之后,将返回一个逻辑视图名的字符串.核心Filter收到返回的逻辑视图名字符串,根据struts.xml中的逻辑视图 ...