转自:http://lxw1234.com/archives/2015/04/176.htm,Hive分析窗口函数(一) SUM,AVG,MIN,MAX

之前看到大数据田地有关于max()over(partition by)的用法,今天恰好工作中用到了它,但是使用中遇到了一个问题:在max(rsrp)over(partition by buildingid,height) as max_rsrp返回的结果不是分组中的最大值。最中找到了问题的原因:max_rsrp数据类型为string而不是double类型,导致的一个bug问题。

再处理的过程中也再次把大数据田地的中关于sum,avg,max,min的函数用法做了demo,因此有了该参考后的文章。

数据准备:

echo ''>data_file.txt
vim data_file.txt
cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,6
cookie2,2015-04-11,5
cookie2,2015-04-12,7
cookie2,2015-04-13,4
cookie2,2015-04-14,3
cookie2,2015-04-15,5
cookie2,2015-04-16,5
hadoop fs -rm -r /user/jrf/test_data
hadoop fs -mkdir /user/jrf/test_data
hadoop fs -copyFromLocal data_file.txt /user/jrf/test_data/
drop table if exists test_data;
create EXTERNAL TABLE test_data (
cookieid string,
createtime string, --day
pv INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/user/jrf/test_data/';
select * from test_data;
+---------------------+-----------------------+---------------+--+
| test_data.cookieid | test_data.createtime | test_data.pv |
+---------------------+-----------------------+---------------+--+
| cookie1 | 2015-04-10 | 1 |
| cookie1 | 2015-04-11 | 5 |
| cookie1 | 2015-04-12 | 7 |
| cookie1 | 2015-04-13 | 3 |
| cookie1 | 2015-04-14 | 2 |
| cookie1 | 2015-04-15 | 4 |
| cookie1 | 2015-04-16 | 4 |
| cookie2 | 2015-04-10 | 6 |
| cookie2 | 2015-04-11 | 5 |
| cookie2 | 2015-04-12 | 7 |
| cookie2 | 2015-04-13 | 4 |
| cookie2 | 2015-04-14 | 3 |
| cookie2 | 2015-04-15 | 5 |
| cookie2 | 2015-04-16 | 5 |
+---------------------+-----------------------+---------------+--+

SUM — 注意,结果和ORDER BY相关,默认为升序

SELECT cookieid,createtime,pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 26 | 1 | 6 | 26 |
| cookie1 | 2015-04-11 | 5 | 6 | 6 | 26 | 6 | 13 | 25 |
| cookie1 | 2015-04-12 | 7 | 13 | 13 | 26 | 13 | 16 | 20 |
| cookie1 | 2015-04-13 | 3 | 16 | 16 | 26 | 16 | 18 | 13 |
| cookie1 | 2015-04-14 | 2 | 18 | 18 | 26 | 17 | 21 | 10 |
| cookie1 | 2015-04-15 | 4 | 22 | 22 | 26 | 16 | 20 | 8 |
| cookie1 | 2015-04-16 | 4 | 26 | 26 | 26 | 13 | 13 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 35 | 6 | 11 | 35 |
| cookie2 | 2015-04-11 | 5 | 11 | 11 | 35 | 11 | 18 | 29 |
| cookie2 | 2015-04-12 | 7 | 18 | 18 | 35 | 18 | 22 | 24 |
| cookie2 | 2015-04-13 | 4 | 22 | 22 | 35 | 22 | 25 | 17 |
| cookie2 | 2015-04-14 | 3 | 25 | 25 | 35 | 19 | 24 | 13 |
| cookie2 | 2015-04-15 | 5 | 30 | 30 | 35 | 19 | 24 | 10 |
| cookie2 | 2015-04-16 | 5 | 35 | 35 | 35 | 17 | 17 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
pv2: 同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,14号=14号+15号+16号=2+4+4=10

如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点

–其他AVG,MIN,MAX,和SUM用法一样。

--AVG
SELECT cookieid,createtime,pv,
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
AVG(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
| cookie1 | 2015-04-10 | 1 | 1.0 | 1.0 | 3.7142857142857144 | 1.0 | 3.0 | 3.7142857142857144 |
| cookie1 | 2015-04-11 | 5 | 3.0 | 3.0 | 3.7142857142857144 | 3.0 | 4.333333333333333 | 4.166666666666667 |
| cookie1 | 2015-04-12 | 7 | 4.333333333333333 | 4.333333333333333 | 3.7142857142857144 | 4.333333333333333 | 4.0 | 4.0 |
| cookie1 | 2015-04-13 | 3 | 4.0 | 4.0 | 3.7142857142857144 | 4.0 | 3.6 | 3.25 |
| cookie1 | 2015-04-14 | 2 | 3.6 | 3.6 | 3.7142857142857144 | 4.25 | 4.2 | 3.3333333333333335 |
| cookie1 | 2015-04-15 | 4 | 3.6666666666666665 | 3.6666666666666665 | 3.7142857142857144 | 4.0 | 4.0 | 4.0 |
| cookie1 | 2015-04-16 | 4 | 3.7142857142857144 | 3.7142857142857144 | 3.7142857142857144 | 3.25 | 3.25 | 4.0 |
| cookie2 | 2015-04-10 | 6 | 6.0 | 6.0 | 5.0 | 6.0 | 5.5 | 5.0 |
| cookie2 | 2015-04-11 | 5 | 5.5 | 5.5 | 5.0 | 5.5 | 6.0 | 4.833333333333333 |
| cookie2 | 2015-04-12 | 7 | 6.0 | 6.0 | 5.0 | 6.0 | 5.5 | 4.8 |
| cookie2 | 2015-04-13 | 4 | 5.5 | 5.5 | 5.0 | 5.5 | 5.0 | 4.25 |
| cookie2 | 2015-04-14 | 3 | 5.0 | 5.0 | 5.0 | 4.75 | 4.8 | 4.333333333333333 |
| cookie2 | 2015-04-15 | 5 | 5.0 | 5.0 | 5.0 | 4.75 | 4.8 | 5.0 |
| cookie2 | 2015-04-16 | 5 | 5.0 | 5.0 | 5.0 | 4.25 | 4.25 | 5.0 |
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
--MIN
SELECT cookieid,createtime,pv,
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2,--从起点到当前行,结果同pv1
MIN(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| cookie1 | 2015-04-11 | 5 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-12 | 7 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-13 | 3 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-14 | 2 | 1 | 1 | 1 | 2 | 2 | 2 |
| cookie1 | 2015-04-15 | 4 | 1 | 1 | 1 | 2 | 2 | 4 |
| cookie1 | 2015-04-16 | 4 | 1 | 1 | 1 | 2 | 2 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 3 | 6 | 5 | 3 |
| cookie2 | 2015-04-11 | 5 | 5 | 5 | 3 | 5 | 5 | 3 |
| cookie2 | 2015-04-12 | 7 | 5 | 5 | 3 | 5 | 4 | 3 |
| cookie2 | 2015-04-13 | 4 | 4 | 4 | 3 | 4 | 3 | 3 |
| cookie2 | 2015-04-14 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| cookie2 | 2015-04-15 | 5 | 3 | 3 | 3 | 3 | 3 | 5 |
| cookie2 | 2015-04-16 | 5 | 3 | 3 | 3 | 3 | 3 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
--MAX
SELECT cookieid,createtime,pv,
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 7 | 1 | 5 | 7 |
| cookie1 | 2015-04-11 | 5 | 5 | 5 | 7 | 5 | 7 | 7 |
| cookie1 | 2015-04-12 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| cookie1 | 2015-04-13 | 3 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-14 | 2 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-15 | 4 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-16 | 4 | 7 | 7 | 7 | 4 | 4 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 7 | 6 | 6 | 7 |
| cookie2 | 2015-04-11 | 5 | 6 | 6 | 7 | 6 | 7 | 7 |
| cookie2 | 2015-04-12 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| cookie2 | 2015-04-13 | 4 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-14 | 3 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-15 | 5 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-16 | 5 | 7 | 7 | 7 | 5 | 5 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+ SELECT cookieid,
createtime,
pv,
min(pv) OVER(PARTITION BY cookieid) AS min_pv,
max(pv) OVER(PARTITION BY cookieid) AS max_pv
FROM test_data;
+-----------+-------------+-----+---------+---------+--+
| cookieid | createtime | pv | min_pv | max_pv |
+-----------+-------------+-----+---------+---------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 7 |
| cookie1 | 2015-04-16 | 4 | 1 | 7 |
| cookie1 | 2015-04-15 | 4 | 1 | 7 |
| cookie1 | 2015-04-14 | 2 | 1 | 7 |
| cookie1 | 2015-04-13 | 3 | 1 | 7 |
| cookie1 | 2015-04-12 | 7 | 1 | 7 |
| cookie1 | 2015-04-11 | 5 | 1 | 7 |
| cookie2 | 2015-04-16 | 5 | 3 | 7 |
| cookie2 | 2015-04-15 | 5 | 3 | 7 |
| cookie2 | 2015-04-14 | 3 | 3 | 7 |
| cookie2 | 2015-04-13 | 4 | 3 | 7 |
| cookie2 | 2015-04-12 | 7 | 3 | 7 |
| cookie2 | 2015-04-11 | 5 | 3 | 7 |
| cookie2 | 2015-04-10 | 6 | 3 | 7 |
+-----------+-------------+-----+---------+---------+--+

Hive函数:SUM,AVG,MIN,MAX的更多相关文章

  1. Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive中提供了越来越多的分析函数,用于完成负责的统计分析.抽时间将所有的分析窗 ...

  2. Hive学习之路 (十三)Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    数据准备 数据格式 cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, 创建数据库及表 create datab ...

  3. MybatisPlus Lambda表达式 聚合查询 分组查询 COUNT SUM AVG MIN MAX GroupBy

    一.序言 众所周知,MybatisPlus在处理单表DAO操作时非常的方便.在处理多表连接连接查询也有优雅的解决方案.今天分享MybatisPlus基于Lambda表达式优雅实现聚合分组查询. 由于视 ...

  4. C# 中奇妙的函数–6. 五个序列聚合运算(Sum, Average, Min, Max,Aggregate)

    今天,我们将着眼于五个用于序列的聚合运算.很多时候当我们在对序列进行操作时,我们想要做基于这些序列执行某种汇总然后,计算结果. Enumerable 静态类的LINQ扩展方法可以做到这一点 .就像之前 ...

  5. SQL模糊查询,sum,AVG,MAX,min函数

    cmd mysql -hlocalhost -uroot -p select * from emp where ename like '___' -- 三个横线, - 代表字符,可以查询 三个enam ...

  6. 三、函数 (SUM、MIN、MAX、COUNT、AVG)

    第八章 使用数据处理函数 8.1 函数 SQL支持利用函数来处理数据.函数一般是在数据上执行的,给数据的转换和处理提供了方便. 每一个DBMS都有特定的函数.只有少数几个函数被所有主要的DBMS等同的 ...

  7. LINQ to SQL Count/Sum/Min/Max/Avg Join

    public class Linq { MXSICEDataContext Db = new MXSICEDataContext(); // LINQ to SQL // Count/Sum/Min/ ...

  8. LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg

    LINQ  to SQL 语句(3) 之  Count/Sum/Min/Max/Avg [1] Count/Sum 讲解 [2] Min 讲解 [3] Max 讲解 [4] Average 和 Agg ...

  9. [转]LINQ语句之Select/Distinct和Count/Sum/Min/Max/Avg

    在讲述了LINQ,顺便说了一下Where操作,这篇开始我们继续说LINQ语句,目的让大家从语句的角度了解LINQ,LINQ包括LINQ to Objects.LINQ to DataSets.LINQ ...

随机推荐

  1. Struts2 学习之小白开始

    Struts2 基础知识学习总结 Struts2 概述:Struts2 是一个用来开发 MVC 应用程序的框架,他提供了 Web 应用程序开发过程中的一些常见问题的解决方案,比如对于用户输入信息合法性 ...

  2. [Luogu 2642] 双子序列最大和

    Description 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小 ...

  3. Java语法基础(1)

    Java语法基础(1) 1.      Java是一门跨平台(也就是跨操作系统)语言,其跨平台的本质是借助java虚拟机 (也就是JVM(java virtual mechinal))进行跨平台使用. ...

  4. zabbix监控redis性能

    创建采集脚本 mkdir -p /etc/zabbix/scripts chown -R zabbix.root /etc/zabbix/scripts vim redis_status.sh  #! ...

  5. http,socks4,socks5代理的区别

    HTTP代理 能够代理客户机的HTTP访问,主要是代理浏览器访问网页,它的端口一般为80.8080.3128等: SOCKS代理 SOCKS代理与其他类型的代理不同,它只是简单地传递数据包,而并不关心 ...

  6. mysql多实例运行

    1.主配置文件 [mysqld_multi] mysqld = /usr/local/mysql/bin/mysqld_safe mysqladmin = /usr/local/mysql/bin/m ...

  7. #Python3.6.2(32位) pip安装 和 pygame 环境配置

    #首先确认电脑已经安装python ,可通过在命令行下 执行 python --version确认. 1. 到 https://pypi.python.org/pypi/setuptools/ 下载 ...

  8. 设计模式之迭代器模式详解(foreach的精髓)

    作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 各位好,很久没以LZ的身份和 ...

  9. js 声明提升

    声明提前变量在声明之前已经可以使用了 js中的所有的变量声明都提升到函数体内的顶部 ,如下图 实际运行的情况是如下 function f1() {-- var scope ; console.log( ...

  10. Welcome to StackEdit!

    Welcome to StackEdit! Hey!our first Markdown document in StackEdit1. Don't delete me, I'm very helpf ...