D. Bash and a Tough Math Puzzle
time limit per test

2.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Bash likes playing with arrays. He has an array a1, a2, ... an of n integers. He likes to guess the greatest common divisor (gcd) of different segments of the array. Of course, sometimes the guess is not correct. However, Bash will be satisfied if his guess is almost correct.

Suppose he guesses that the gcd of the elements in the range [l, r] of a is x. He considers the guess to be almost correct if he can change at most one element in the segment such that the gcd of the segment is x after making the change. Note that when he guesses, he doesn't actually change the array — he just wonders if the gcd of the segment can be made x. Apart from this, he also sometimes makes changes to the array itself.

Since he can't figure it out himself, Bash wants you to tell him which of his guesses are almost correct. Formally, you have to process qqueries of one of the following forms:

  • 1 lrx — Bash guesses that the gcd of the range [l, r] is x. Report if this guess is almost correct.
  • 2 iy — Bash sets ai to y.

Note: The array is 1-indexed.

Input

The first line contains an integer n (1 ≤ n ≤ 5·105)  — the size of the array.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109)  — the elements of the array.

The third line contains an integer q (1 ≤ q ≤ 4·105)  — the number of queries.

The next q lines describe the queries and may have one of the following forms:

  • 1 lrx (1 ≤ l ≤ r ≤ n, 1 ≤ x ≤ 109).
  • 2 iy (1 ≤ i ≤ n, 1 ≤ y ≤ 109).

Guaranteed, that there is at least one query of first type.

Output

For each query of first type, output "YES" (without quotes) if Bash's guess is almost correct and "NO" (without quotes) otherwise.

Examples
input
3
2 6 3
4
1 1 2 2
1 1 3 3
2 1 9
1 1 3 2
output
YES
YES
NO
input
5
1 2 3 4 5
6
1 1 4 2
2 3 6
1 1 4 2
1 1 5 2
2 5 10
1 1 5 2
output
NO
YES
NO
YES
Note

In the first sample, the array initially is {2, 6, 3}.

For query 1, the first two numbers already have their gcd as 2.

For query 2, we can achieve a gcd of 3 by changing the first element of the array to 3. Note that the changes made during queries of type 1are temporary and do not get reflected in the array.

After query 3, the array is now {9, 6, 3}.

For query 4, no matter which element you change, you cannot get the gcd of the range to be 2.

题意:给出一段序列,两个操作

操作1 给出l,r,x

求区间l-r的gcd,如果至多能改掉区间内的一个数,使gcd是x的倍数,那么输出YES,否则输出NO

操作2 给出pos,x

将序列中pos位置上的数字改为x

题解:我一开始看到这道题,没看到可以修改一个数,然后觉得是一道智障线段树,十分钟不到就写完了,结果非常GG地发现被题意杀了,完了,不会做

后面想了一下,对于返回的一个块,如果他的gcd不是x的倍数,那么这个区间肯定是要改数的,如果这样的区间有两个及以上,那么肯定输出NO

但是我们没法保证如果只有一个块的gcd非x的倍数时,这个块一定只用改一个值

再来考虑,每个块肯定会被分成左块和右块,如果左右两块都不是x的倍数就又GG了

如果只有一个块不是x的倍数,那么就按照上面的思路继续二分这个块

直到二分到只剩下一个数字,此时肯定输出yes

然后就搞定啦~其实还是不难的~

代码如下

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; int gcd(int a,int b)
{
if(b>a)
{
swap(a,b);
}
if(b)
{
return gcd(b,a%b);
}
else
{
return a;
}
} int nowson,x,cnt,n,m; struct node
{
int l,r,g;
}tr[]; void push(int root)
{
tr[root].g=gcd(tr[rson].g,tr[lson].g);
} void build(int root,int l,int r)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
scanf("%d",&tr[root].g);
return ;
}
int mid=(l+r)>>;
tr[root].l=l;
tr[root].r=r;
build(lson,l,mid);
build(rson,mid+,r);
push(root);
} void update(int root,int pos,int v)
{
if(tr[root].l==pos&&tr[root].r==pos)
{
tr[root].g=v;
return ;
}
int mid=(tr[root].l+tr[root].r)>>;
if(mid>=pos)
{
update(lson,pos,v);
}
else
{
update(rson,pos,v);
}
push(root);
} int query(int root,int l,int r)
{
if(tr[root].l==l&&tr[root].r==r)
{
if(tr[root].g%x!=)
{
cnt--;
nowson=root;
}
return tr[root].g;
}
int mid=(tr[root].l+tr[root].r)>>;
if(l>mid)
{
return query(rson,l,r);
}
else
{
if(r<=mid)
{
return query(lson,l,r);
}
else
{
return gcd(query(lson,l,mid),query(rson,mid+,r));
}
}
} int check(int root)
{
if(tr[root].l==tr[root].r)
{
return ;
}
if(tr[lson].g%x!=&&tr[rson].g%x!=)
{
return ;
}
if(tr[lson].g%x==)
{
return check(rson);
}
else
{
return check(lson);
}
} int main()
{
int n,m;
scanf("%d",&n);
build(,,n);
scanf("%d",&m);
for(int i=;i<=m;i++)
{
int kd,l,r;
scanf("%d",&kd);
if(kd==)
{
cnt=;
scanf("%d%d%d",&l,&r,&x);
int tmp=query(,l,r);
if(x==tmp)
{
puts("YES");
}
else
{
if((!cnt)&&check(nowson))
{
puts("YES");
}
else
{
puts("NO");
}
}
}
else
{
scanf("%d%d",&l,&r);
update(,l,r);
}
}
}

CodeForces 914DBash and a Tough Math Puzzle(线段树的骚操作)的更多相关文章

  1. Codeforces 914D - Bash and a Tough Math Puzzle 线段树,区间GCD

    题意: 两个操作, 单点修改 询问一段区间是否能在至多一次修改后,使得区间$GCD$等于$X$ 题解: 正确思路; 线段树维护区间$GCD$,查询$GCD$的时候记录一共访问了多少个$GCD$不被X整 ...

  2. Codeforces.914D.Bash and a Tough Math Puzzle(线段树)

    题目链接 \(Description\) 给定一个序列,两种操作:一是修改一个点的值:二是给一个区间\([l,r]\),问能否只修改一个数使得区间gcd为\(x\). \(Solution\) 想到能 ...

  3. cf914D. Bash and a Tough Math Puzzle(线段树)

    题意 题目链接 Sol 直接在线段树上二分 当左右儿子中的一个不是\(x\)的倍数就继续递归 由于最多递归到一个叶子节点,所以复杂度是对的 开始时在纠结如果一段区间全是\(x\)的两倍是不是需要特判, ...

  4. CF914D Bash and a Tough Math Puzzle 线段树+gcd??奇怪而精妙

    嗯~~,好题... 用线段树维护区间gcd,按如下法则递归:(记题目中猜测的那个数为x,改动次数为tot) 1.若子区间的gcd是x的倍数,不递归: 2.若子区间的gcd是x的倍数,且没有递归到叶子结 ...

  5. CodeForces 620E New Year Tree(线段树的骚操作第二弹)

    The New Year holidays are over, but Resha doesn't want to throw away the New Year tree. He invited h ...

  6. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  7. 2018.12.08 codeforces 914D. Bash and a Tough Math Puzzle(线段树)

    传送门 线段树辣鸡题. 题意简述:给出一个序列,支持修改其中一个数,以及在允许自行修改某个数的情况下询问区间[l,r][l,r][l,r]的gcdgcdgcd是否可能等于一个给定的数. 看完题就感觉是 ...

  8. CF 914 D. Bash and a Tough Math Puzzle

    D. Bash and a Tough Math Puzzle http://codeforces.com/contest/914/problem/D 题意: 单点修改,每次询问一段l~r区间能否去掉 ...

  9. D. Bash and a Tough Math Puzzle 解析(線段樹、數論)

    Codeforce 914 D. Bash and a Tough Math Puzzle 解析(線段樹.數論) 今天我們來看看CF914D 題目連結 題目 給你一個長度為\(n\)的數列\(a\), ...

随机推荐

  1. 上传到 App Store 时出错。

      Try this, it fixed it for me. Open Terminal and run: cd ~ mv .itmstransporter/ .old_itmstransporte ...

  2. Redis分布式锁---完美实现

    这几天在做项目缓存时候,因为是分布式的所以需要加锁,就用到了Redis锁,正好从网上发现两篇非常棒的文章,来和大家分享一下. 第一篇是简单完美的实现,第二篇是用到的Redisson. Redis分布式 ...

  3. Algorithm --> 邮票连续组合问题

    邮票组合问题 有四种面值的邮票很多枚,面值分别为1,4,12,21,取五张,求取出这些邮票的最大连续组合值 代码: #include <stdio.h> #include <stri ...

  4. logback读取src/test/resource下的配置文件

    import java.io.File; import java.net.URISyntaxException; import java.util.Map; import java.util.Prop ...

  5. [git 实践篇]如何创建公钥

    如何创建公钥 首先启动一个Git Bash窗口(非Windows用户直接打开终端) 执行: cd ~/.ssh 如果返回"- No such file or directory", ...

  6. Matlab绘图基础——axis设置坐标轴取值范围

    peaks; axis tight  %Set the axis limits to equal the range of the data  axis square axis 'auto x'  % ...

  7. HTTP协议----请求方法和状态码

    现在广泛使用的是HTTP/1.1版本,发布于1997年. 理解HTTP协议,首先从请求开始,比如: POST /form/entry HTTP/1.1 格式为: 请求方法 URI 协议版本 请求方法: ...

  8. Java虚拟机之Java内存区域

    Java虚拟机运行时数据区域 ⑴背景:对于c/c++来说程序员来说,需要经常去关心内存运行情况,但对于Java程序员,只需要在必要时关心内存运行情况,这是因为在Java虚拟机自动内存管理机制的帮助下, ...

  9. alpha冲刺总结随笔

    前言:前面乱乱糟糟整了一路,到最后终于可以稳定下来了.安安心心做个总结,然后把之后要做的事情都理清楚好了. 新学长似乎是个正经[并不]大腿. 看起来也不用都是一个人或者跟陈华学长两个人对半开了[突然摸 ...

  10. ThreadLocal就是这么简单

    前言 今天要研究的是ThreadLocal,这个我在一年前学习JavaWeb基础的时候接触过一次,当时在baidu搜出来的第一篇博文ThreadLocal,在评论下很多开发者认为那博主理解错误,给出了 ...