72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
听人家说,这是 双序列DP问题. 确实,对我来说,这个题的解法好难理解,即使之前做出了几个dp问题.我怎么可能说自己笨呢!
四个优秀的解释:
http://www.stanford.edu/class/cs124/lec/med.pdf
http://www.cnblogs.com/pandora/archive/2009/12/20/levenshtein_distance.html
http://www.jianshu.com/p/39115986db5a
http://www.dreamxu.com/books/dsa/dp/edit-distance.html
一个分治、dp、贪心的优秀小 book:
http://www.dreamxu.com/books/dsa/dc/subset.html
看了人家很多解释,还是自己想出个例子,自己再顺一遍才能较好的理解.Come on!
假设有 3 种操作:
插入,删除 和 修改.假设它们的 cost 均为 1;
注意有的题目可能它们的 cost 不相同, 比如:
- The costs of both insertion(插入) and deletion(删除) are same value, that is 1;
- The cost of substitution(替换) is 2.
咱自己的例子:
说例子前需说明什么是 dp[i, j].
dp[i, j] 称为 s1[0..i] 串到 s2[0..j] 的最小距离. 表示 字符串 s1[0..i] 转变成 s2[0..j] 的最小代价.在我们的题中,也可理解为最小步骤(因为无论啥操作,cost都是1).
这句话当初对我来说并不好理解.为了更容易的让大家理解,举个例子:
本解释将跟随题目要求,cost 均为1.
符号 "*" 代表空字符串.
s1 = "a"
s2 = "b"
现在要把 s1 变成 s2,问:最少的步骤是多少? 显然,这种情况下,凭直觉,肯定是1步,既, 1步 substitution.
此时:
这是要对 s1 做 substitution 操作, 将 a 替换成 b:
dp[i, j] = dp[i-1, j-1] + 1 = dp[0, 0] + 1 = 0 + 1 = 1;
若 s1 的第一个字符 a 和 s2 的第一个字符一样的话: dp[1, 1] = dp[0, 0] = 0, 就不需要替换操作了.
* a
^
i=1
* b
^
j=1
dp[i = 1, j = 1] 可以写成 dp[i = 0, j = 0] + 1. 就是 s1[0..1] 的串变成 s2[0..1] 的串可表示成 s1的空串变成s2的空串所需次数 + 1.
空串变空串?那还用变?精神病的做法是 * -> a ->*,这个cost = 2, 而dp里存的是最小次数或叫做最下距离,那么显然 dp[i = 0, j = 0] = 0 (空串变空串?两个空串有什么好变化的,对吧)
但真的只有这一种办法吗?不是的.看下面:
这是 s1由空变为b 步骤数已知的情况下, 再删除a:
dp[i, j] = dp[i-1][j] + 1 = 1 + 1 = 2
* a
^
i-1=0
* b
^
j=1
还有一个情况:
这是 s1="a" ,删除a变成空的步骤数已知的情况下,再在最后面插入一个b:
dp[i, j] = dp[i][j-1] + 1 = dp[1][0] + 1 = 1 + 1 = 2
* a
^
i=1
* b
^
j-1=0
dp[i, j]只与其左上,左,上,有关.分别为 dp[i-1,j-1], dp[i,j-1] and dp[i-1,j].
总结起来步骤是这样的:
- m = s1 的长度, n = s2 的长度;
- 初始化边界:
dp[0][j] = j, dp[i][0] = i,其中i = [0,..,m], j = [0,..,n]. 就是空串变某个串, 或某个串变空串的步骤数,肯定是那个串的长度了; - 若
s1[i - 1] = s2[j - 1], 则dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));这表示若dp[i - 1][j - 1], dp[i - 1][j]+1, dp[i][j - 1]+1已知, 则由这3种 case所表达的状态 到dp[i][i]的状态.我们取上述三种状态的最小值赋值给dp[i][j]. 其中dp[i - 1][j - 1]不用加1是因为s1和s2最后一个字符是一样的,当然不用再加1,否则+1(就是修改s1最后字符为s2最后字符,其实说最后字符是不妥当的,我们直接认为当前正在处理s1,s2最后面的那个字符,这么想能使问题简单一些.) - 若
s1[i - 1] != s2[j - 1], 则dp[i][j] = min(dp[i - 1][j - 1] + 1, min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));注意,除了dp[i - 1][j - 1] + 1有变化外,其他没变. - 空间复杂度问题:我们可以维护一个(m+1) * (n+1) 的 dp 矩阵,另一种更好的办法是只维护一个 m 或 n 大小的数组.
人家想法,咱的代码:
方法一:
\(O(m*n)\) time, \(O(m*n)\) extra space.
int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length();
// dp: a (m+1) * (n+1) matrix
vector < vector<int> > dp(m + 1, vector<int>(n + 1, 0));
// fill values in boundary
for (int i = 0; i <= m; i++)
dp[i][0] = i;
for (int j = 0; j <= n; j++)
dp[0][j] = j;
// dp state transfer formula
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (word1[i - 1] == word2[j - 1])
dp[i][j] = min(dp[i - 1][j - 1],
min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
else
dp[i][j] = min(dp[i - 1][j - 1] + 1,
min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
return dp[m][n];
}
方法二:
\(O(m*n)\) time, \(O(m)\) extra space.
墨迹了挺长时间,没写出来.
看人家的吧.https://leetcode.com/problems/edit-distance/discuss/
写本文的时候发现,文字描述起来好费劲,啰里啰嗦,自己写作水平根本不行啊.
72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)的更多相关文章
- 【Leetcode】72 Edit Distance
72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...
- 刷题72. Edit Distance
一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 72. Edit Distance
题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- 72. Edit Distance *HARD*
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- LeetCode - 72. Edit Distance
最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...
- 【一天一道LeetCode】#72. Edit Distance
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...
随机推荐
- Centos7 安装python3
Centos7 安装python3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 #安装sqlite-devel yum -y ...
- SpringMVC 使用MultipartFile实现文件上传(转)
http://blog.csdn.net/kouwoo/article/details/40507565 一.配置文件:SpringMVC 用的是 的MultipartFile来进行文件上传 所以我们 ...
- Java多线程之interrupt()的深度研究
近期学习Java多线程的中断机制,网上的帖子说得很浅,并没深究其原理.看了Java源码,对Java的中断机制有了略深入的理解,在这篇文章中向感兴趣的网友分享下.这篇文章主要通过一个典型例子对中断机制进 ...
- ubuntu安装 tar.gz格式程序
tar.gz(bz或bz2等) 一.安装1.打开一个SHELL,即终端2.用cd 命令进入源代码压缩包所在的目录3.根据压缩包类型解压缩文件(*代表压缩包名称)tar -zxvf ****.tar.g ...
- 6.19 noip模拟题(题目及解析转自 hzwer 2014-3-15 NOIP模拟赛)
Problem 1 高级打字机(type.cpp/c/pas) [题目描述] 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这种高级打字机设计一个程序 ...
- [WC 2010]重建计划
Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案, ...
- [HNOI 2015]开店
Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现 ...
- [HNOI 2008]玩具装箱
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- [BZOJ 3332]旧试题
Description 圣诞节将至.一年一度的难题又摆在wyx面前——如何给妹纸送礼物. wyx的后宫有n人,这n人之间有着复杂的关系网,相互认识的人有m对.wyx想要量化后宫之间的亲密度,于是准备给 ...
- 计蒜客NOIP模拟赛D2T2 直线的交点
伦伦刚刚在高中学习了解析几何,学会了计算两条直线的交点.这天,老师给她布置了一道作业.在平面上有 nnn 条直线,他们之间有若干交点.给定一对平板(两条平行的直线),问这有多少对直线,他们的交点在这一 ...