Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character

b) Delete a character

c) Replace a character

听人家说,这是 双序列DP问题. 确实,对我来说,这个题的解法好难理解,即使之前做出了几个dp问题.我怎么可能说自己笨呢!

四个优秀的解释:

http://www.stanford.edu/class/cs124/lec/med.pdf

http://www.cnblogs.com/pandora/archive/2009/12/20/levenshtein_distance.html

http://www.jianshu.com/p/39115986db5a

http://www.dreamxu.com/books/dsa/dp/edit-distance.html

一个分治、dp、贪心的优秀小 book:

http://www.dreamxu.com/books/dsa/dc/subset.html

看了人家很多解释,还是自己想出个例子,自己再顺一遍才能较好的理解.Come on!

假设有 3 种操作:

插入,删除 和 修改.假设它们的 cost 均为 1;

注意有的题目可能它们的 cost 不相同, 比如:

  • The costs of both insertion(插入) and deletion(删除) are same value, that is 1;
  • The cost of substitution(替换) is 2.

咱自己的例子:

说例子前需说明什么是 dp[i, j].

dp[i, j] 称为 s1[0..i] 串到 s2[0..j] 的最小距离. 表示 字符串 s1[0..i] 转变成 s2[0..j] 的最小代价.在我们的题中,也可理解为最小步骤(因为无论啥操作,cost都是1).

这句话当初对我来说并不好理解.为了更容易的让大家理解,举个例子:

本解释将跟随题目要求,cost 均为1.

符号 "*" 代表空字符串.

s1 = "a"
s2 = "b"

现在要把 s1 变成 s2,问:最少的步骤是多少? 显然,这种情况下,凭直觉,肯定是1步,既, 1步 substitution.

此时:

这是要对 s1 做 substitution 操作, 将 a 替换成 b:
dp[i, j] = dp[i-1, j-1] + 1 = dp[0, 0] + 1 = 0 + 1 = 1;
若 s1 的第一个字符 a 和 s2 的第一个字符一样的话: dp[1, 1] = dp[0, 0] = 0, 就不需要替换操作了. * a
^
i=1 * b
^
j=1

dp[i = 1, j = 1] 可以写成 dp[i = 0, j = 0] + 1. 就是 s1[0..1] 的串变成 s2[0..1] 的串可表示成 s1的空串变成s2的空串所需次数 + 1.

空串变空串?那还用变?精神病的做法是 * -> a ->*,这个cost = 2, 而dp里存的是最小次数或叫做最下距离,那么显然 dp[i = 0, j = 0] = 0 (空串变空串?两个空串有什么好变化的,对吧)

但真的只有这一种办法吗?不是的.看下面:

这是 s1由空变为b 步骤数已知的情况下, 再删除a:
dp[i, j] = dp[i-1][j] + 1 = 1 + 1 = 2 * a
^
i-1=0 * b
^
j=1

还有一个情况:

这是 s1="a" ,删除a变成空的步骤数已知的情况下,再在最后面插入一个b:
dp[i, j] = dp[i][j-1] + 1 = dp[1][0] + 1 = 1 + 1 = 2 * a
^
i=1 * b
^
j-1=0

dp[i, j]只与其左上,左,上,有关.分别为 dp[i-1,j-1], dp[i,j-1] and dp[i-1,j].

总结起来步骤是这样的:

  1. m = s1 的长度, n = s2 的长度;
  2. 初始化边界:dp[0][j] = j, dp[i][0] = i,其中i = [0,..,m], j = [0,..,n]. 就是空串变某个串, 或某个串变空串的步骤数,肯定是那个串的长度了;
  3. s1[i - 1] = s2[j - 1], 则dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j] + 1, dp[i][j - 1] + 1)); 这表示若dp[i - 1][j - 1], dp[i - 1][j]+1, dp[i][j - 1]+1 已知, 则由这3种 case所表达的状态 到 dp[i][i]的状态.我们取上述三种状态的最小值赋值给dp[i][j]. 其中dp[i - 1][j - 1]不用加1是因为s1和s2最后一个字符是一样的,当然不用再加1,否则+1(就是修改s1最后字符为s2最后字符,其实说最后字符是不妥当的,我们直接认为当前正在处理s1,s2最后面的那个字符,这么想能使问题简单一些.)
  4. s1[i - 1] != s2[j - 1], 则dp[i][j] = min(dp[i - 1][j - 1] + 1, min(dp[i - 1][j] + 1, dp[i][j - 1] + 1)); 注意,除了dp[i - 1][j - 1] + 1有变化外,其他没变.
  5. 空间复杂度问题:我们可以维护一个(m+1) * (n+1) 的 dp 矩阵,另一种更好的办法是只维护一个 m 或 n 大小的数组.

人家想法,咱的代码:

方法一:

\(O(m*n)\) time, \(O(m*n)\) extra space.

int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length(); // dp: a (m+1) * (n+1) matrix
vector < vector<int> > dp(m + 1, vector<int>(n + 1, 0)); // fill values in boundary
for (int i = 0; i <= m; i++)
dp[i][0] = i;
for (int j = 0; j <= n; j++)
dp[0][j] = j; // dp state transfer formula
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (word1[i - 1] == word2[j - 1])
dp[i][j] = min(dp[i - 1][j - 1],
min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
else
dp[i][j] = min(dp[i - 1][j - 1] + 1,
min(dp[i - 1][j] + 1, dp[i][j - 1] + 1)); return dp[m][n];
}

方法二:

\(O(m*n)\) time, \(O(m)\) extra space.

墨迹了挺长时间,没写出来.

看人家的吧.https://leetcode.com/problems/edit-distance/discuss/

写本文的时候发现,文字描述起来好费劲,啰里啰嗦,自己写作水平根本不行啊.

72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)的更多相关文章

  1. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

  2. 刷题72. Edit Distance

    一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...

  3. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. 72. Edit Distance

    题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...

  5. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  6. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  7. 72. Edit Distance *HARD*

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  8. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  9. 【一天一道LeetCode】#72. Edit Distance

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...

随机推荐

  1. Linux实战案例(6)yum查找、卸载、和安装软件

    0.查找要安装的软件名字 yum search iostat就能查到以及iostat相干的安装包了, 别的想安装一个程序,只记得一部门名称,也可以用这个措施来实现安装 yum search png | ...

  2. windbg分析Kernel32.dll导出表

    写在前面的话: 继续上篇,在获得了Kernel32.dll基址的基础上,分析它的导出表结构: 对PE结构不太熟悉的同学,可以参考看雪论坛里的一篇帖子:https://bbs.pediy.com/thr ...

  3. spring9——AOP之AspectJ对AOP的实现

    从上述的实验中可以看出BeanNameAutoProxyCreator对于AOP的实现已经和完美了,但是还有两点不足之处: 1,对于切面的实现比较麻烦,既不同类型的通知切面要实现不同的接口,而且一个切 ...

  4. 2018年html5入门到精通教程电子书百度云盘下载共22本

    名称 查看 <HTML5启动和运行>(HTML5.Up.and.Running)扫描版[PDF] 下载 <Pro HTML5 Performance>(Pro HTML5 Pe ...

  5. python——常用模块2

    python--常用模块2 1 logging模块 1.1 函数式简单配置 import logging logging.debug("debug message") loggin ...

  6. Hibernate(十五):QBC检索、本地SQL检索和HQL删除

    QBC检索 QBC查询就是通过使用Hibernate提供的Query By Criteria API来查询对象,这种API封装了SQL语句的动态拼装,对查询提供了更加面向对象的功能接口. 1)通过Cr ...

  7. jacascript 事件对象event

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 在触发DOM上的某个事件时,会产生一个事件对象 event,这个对象中包含着所有与事件有关的信息.所有浏览 ...

  8. Centos MySQL数据库迁移详细步骤

    其实迁移数据库,一般用sql文件就行,把A服务器数据库的表结构和数据等等导出,然后导入到B服务器数据库, 但是这次数据文件过大,大约有40个G,使用命令行导入,效果不是很好,经常在执行过程中报错.卡死 ...

  9. ES6 继续 变量的解构赋值

    春节放假这几天,感觉跟梦一样,瞬间就过去了.现在上班的前几天,都感觉有点不真实,不过看到口袋里的钱,就知道,是真真实实的度过了这个假期. 现在得开始重新工作了: 变量的解构赋值 ES6 允许按照一定模 ...

  10. [C#] .NET Core/Standard 2.0 编译时报“CS0579: Duplicate 'AssemblyFileVersionAttribute' attribute”错误的解决办法

    作者: zyl910 一.缘由 当创建 .NET Core/Standard 2.0项目时,VS不会像.NET Framework项目一样自动生成AssemblyInfo.cs文件. 而且,若是手工在 ...