一、数据为什么要做质量控制

比起表观学研究,GWAS研究很少有引起偏差的来源,一般来说,一个人的基因型终其一生几乎不会改变的,因此很少存在同时影响表型又影响基因型的变异。但即便这样,我们在做GWAS时也要去除一些可能引起偏差的因素。

这种因素主要有:群体结构、个体间存在血缘关系、技术性操作。

二、怎么看数据是否需要进行质量控制

下面分别为样本和SNP位点在数据中的直方图,当数据不在绝大多数的分布当中时,我们会倾向于认为那是测序、人工操作等其他方面造成的误差,而非该个体的真实情况,因此是需要将这些样本和位点过滤掉的。

这个阈值的设定并没有一个金标准,可参考往年发表的文献的常用阈值。

1、样本过滤阈值的设定

2、SNP过滤阈值的设定

三、怎么进行质量控制

质量控制包括两个方向,一个是样本的质量控制,一个是SNP的质量控制

1、样本的质量控制

样本的质量控制包括:缺失率、杂合性、基因型性别和记录的性别是否一致。

1)检测缺失率,通常情况下,将样本缺失率大于5%的个体去除

plink --bfile file --mind 0.05 --make-bed --out file_mind

  

2)检测杂合性

plink --bfile file --het --make-bed --out file_het

  

3) 检测性别不一致的个体

plink --bfile file --check-sex --make-bed --out file_checksex

  

4)去除不符合的样本

将1-3)获得不符合的样本去除

plink --bfile file --remove removesample.txt --make-bed --out file_qcsample

  

removesample.txt的格式如下:

FID IID

ASN ind1

ASN ind2

2、SNP位点的质量控制

SNP位点的质量控制包括:MAF值、call出率、Hardy-Weinberg Equilibrium

其命令见如下:

plink --bfile file_mind_file_qcsample --hwe 0.00001 --geno 0.02 --maf 0.01 --make-bed --out file_qcsample_snp

  

--hwe指的是不符合哈温伯格平衡的SNP位点,P值小于0.00001;

--geno指的是基因型缺失率大于2%的样本;

--maf指的是次等位基因频率低于1%的SNP位点;

最后,会得出干净的SNP和样本。

文中图片出处:

https://jvanderw.une.edu.au/Mod2Lecture_PLINK.pdf

GWAS基因芯片数据预处理:质量控制(quality control)的更多相关文章

  1. (转)基因芯片数据GO和KEGG功能分析

    随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜.通过 ...

  2. Next generation sequencing (NGS)二代测序数据预处理与分析

    二代测序原理: 1.DNA待测文库构建. 超声波把DNA打断成小片段,一般200--500bp,两端加上不同的接头2.Flowcell.一个flowcell,8个channel,很多接头3.桥式PCR ...

  3. Bioconductor应用领域之基因芯片

    引用自https://mp.weixin.qq.com/s?__biz=MzU4NjU4ODQ2MQ==&mid=2247484662&idx=1&sn=194668553f9 ...

  4. 链终止法|边合成边测序|Bowtie|TopHat|Cufflinks|RPKM|FASTX-Toolkit|fastaQC|基因芯片|桥式扩增|

    生物信息学 Sanger采用链终止法进行测序 带有荧光基团的ddXTP+其他四种普通的脱氧核苷酸放入同一个培养皿中,例如带有荧光基团的ddATP+普通的脱氧核苷酸A.T.C.G放入同一个培养皿,以此类 ...

  5. 第七篇:数据预处理(四) - 数据归约(PCA/EFA为例)

    前言 这部分也许是数据预处理最为关键的一个阶段. 如何对数据降维是一个很有挑战,很有深度的话题,很多理论书本均有详细深入的讲解分析. 本文仅介绍主成分分析法(PCA)和探索性因子分析法(EFA),并给 ...

  6. [数据预处理]-中心化 缩放 KNN(一)

    据预处理是总称,涵盖了数据分析师使用它将数据转处理成想要的数据的一系列操作.例如,对某个网站进行分析的时候,可能会去掉 html 标签,空格,缩进以及提取相关关键字.分析空间数据的时候,一般会把带单位 ...

  7. [机器学习]-[数据预处理]-中心化 缩放 KNN(二)

    上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果   正例 反例 正例 TP 真 ...

  8. Python数据预处理:机器学习、人工智能通用技术(1)

    Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...

  9. 时间序列预测——深度好文,ARIMA是最难用的(数据预处理过程不适合工业应用),线性回归模型简单适用,预测趋势很不错,xgboost的话,不太适合趋势预测,如果数据平稳也可以使用。

    补充:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-276 如果用arima的话,还不如使用随机森 ...

随机推荐

  1. 你真的懂JavaScript基础类型吗

    夯实Javascript基础. 基本类型有六种: null,undefined,boolean,number,string,symbol. 基本类型的值是保存在栈内存中的简单数据段 基础类型特性 基础 ...

  2. win10 64位IIS链接32位ACCESS数据库

    window10中IIS运行.asp文件链接数据库时出现错误,显示“An error occurred on the server when processing the URL. Please co ...

  3. C语言经典算法 - 多维矩阵转一维矩阵的代码

    下边内容内容是关于C语言经典算法 - 多维矩阵转一维矩阵的内容,应该能对码农也有好处. #include <stdio.h>#include <stdlib.h>int mai ...

  4. Java 基于ArcFace人脸识别2.0 服务端Demo

    源代码传送:https://github.com/itboyst/ArcSoftFaceDemo 开发环境准备: ###开发使用到的软件和工具: Jdk8.mysql5.7.libarcsoft_fa ...

  5. ngnix简单使用

    NGINX是一个高性能HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器,是由伊戈尔·塞索耶夫为俄罗斯访问量第二的Rambler.ru站点开发的,第一个公版发布于2004年10月4日 ...

  6. 【RL-TCPnet网络教程】第2章 嵌入式网络协议栈基础知识

    第2章        嵌入式网络协议栈基础知识 本章教程为大家介绍嵌入式网络协议栈基础知识,本章先让大家有一个全面的认识,后面章节中会为大家逐一讲解用到的协议. 基础知识整理自百度百科,wiki百科等 ...

  7. 记MVC学习过程中一次传参到View时遇到的错误

    在跟着 <PRO ASP.NET MVC5>一书进行第七章的练习的时候遇到了以上问题, 当遇到此类问题的时候应该先检查方法传输和其视图接受的数据类型是否一致, 大多时候都是因为两者数据类型 ...

  8. centos7网络配置总结

    centos7网络配置 --wang 一.通过配置文件 配置/etc/sysconfig/network-scripts/en.. 记忆信息量大,易出错,不推荐使用.配置多台电脑静态ip可以通过复制模 ...

  9. gcc/g++ 编译参数

    1, -E(大写),预处理 例子:gcc -E test.cpp -o test.i 预处理,把程序里的#开头的替换掉,比如#include,然后生成test.i 2,-P(大写),去掉预处理生成的杂 ...

  10. selenium之元素定位-css

    CSS定位方式和XPATH定位方式基本相同,只是CSS定位表达式有其自己的格式.CSS定位方式拥有比XPATH定位速度快,且比XPATH稳定的特性.下面详细介绍CSS定位方式的使用方法 被测网页的HT ...