一、数据结构基础

    a、什么是数据结构

        

b、数据结构的分类

       

c、列表 

        

import random
from timewrap import * def list_to_buckets(li, iteration):
"""
:param li: 列表
:param iteration: 装桶是第几次迭代
:return:
"""
buckets = [[] for _ in range(10)]
for num in li:
digit = (num // (10 ** iteration)) % 10
buckets[digit].append(num)
return buckets def buckets_to_list(buckets):
return [num for bucket in buckets for num in bucket]
# li = []
# for bucket in buckets:
# for num in bucket:
# li.append(num) @cal_time
def radix_sort(li):
maxval = max(li) #
it = 0
while 10 ** it <= maxval:
li = buckets_to_list(list_to_buckets(li, it))
it += 1
return li li = [random.randint(0,1000) for _ in range(100000)]
radix_sort(li)

列表

      d、栈

                

二、栈的Python实现

  a、栈的应用——括号匹配为题

    

def brace_match(s):
stack = []
match = {')':'(', ']':'[', '}':'{'}
match2 = {'(':')', '[':']', '{':'}'}
for ch in s:
if ch in {'(', '[', '{'}:
stack.append(ch)
elif len(stack) == 0:
print("缺少%s" % match[ch])
return False
elif stack[-1] == match[ch]:
stack.pop()
else:
print("括号不匹配")
return False
if len(stack) > 0:
print("缺少%s" % (match2[stack[-1]]))
return False
return True brace_match("[{()[]}{}{}")

括号匹配实现

b、队列

       

 c、队列的实现

    

 d、队列的实现原理——环形队列

  e、队列的实现原理——环形队列

   f、队列的内置模块

  

三、栈的应用——迷宫为题

     

解决思路

from collections import deque

maze = [
[1,1,1,1,1,1,1,1,1,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,0,0,1,1,0,0,1],
[1,0,1,1,1,0,0,0,0,1],
[1,0,0,0,1,0,0,0,0,1],
[1,0,1,0,0,0,1,0,0,1],
[1,0,1,1,1,0,1,1,0,1],
[1,1,0,0,0,0,0,0,0,1],
[1,1,1,1,1,1,1,1,1,1]
] dirs = [
lambda x,y:(x-1,y), #上
lambda x,y:(x,y+1), #右
lambda x,y:(x+1,y), #下
lambda x,y:(x,y-1), #左
] def solve_maze(x1, y1, x2, y2):
stack = []
stack.append((x1,y1))
maze[x1][y1] = 2
while len(stack) > 0: # 当栈不空循环
cur_node = stack[-1]
if cur_node == (x2,y2): #到达终点
for p in stack:
print(p)
return True
for dir in dirs:
next_node = dir(*cur_node)
if maze[next_node[0]][next_node[1]] == 0: #找到一个能走的方向
stack.append(next_node)
maze[next_node[0]][next_node[1]] = 2 # 2表示已经走过的点
break
else: #如果一个方向也找不到
stack.pop()
else:
print("无路可走")
return False def solve_maze2(x1,y1,x2,y2):
queue = deque()
path = [] # 记录出队之后的节点
queue.append((x1,y1,-1))
maze[x1][y1] = 2
while len(queue) > 0:
cur_node = queue.popleft()
path.append(cur_node)
if cur_node[0] == x2 and cur_node[1] == y2: #到终点
real_path = []
x,y,i = path[-1]
real_path.append((x,y))
while i >= 0:
node = path[i]
real_path.append(node[0:2])
i = node[2]
real_path.reverse()
for p in real_path:
print(p)
return True
for dir in dirs:
next_node = dir(cur_node[0], cur_node[1])
if maze[next_node[0]][next_node[1]] == 0:
queue.append((next_node[0], next_node[1], len(path)-1))
maze[next_node[0]][next_node[1]] = 2 # 标记为已经走过
else:
print("无路可走")
return False solve_maze2(1,1,8,8)

迷宫问题

 a、队列的应用

def solve_maze2(x1,y1,x2,y2):
queue = deque()
path = [] # 记录出队之后的节点
queue.append((x1,y1,-1))
maze[x1][y1] = 2
while len(queue) > 0:
cur_node = queue.popleft()
path.append(cur_node)
if cur_node[0] == x2 and cur_node[1] == y2: #到终点
real_path = []
x,y,i = path[-1]
real_path.append((x,y))
while i >= 0:
node = path[i]
real_path.append(node[0:2])
i = node[2]
real_path.reverse()
for p in real_path:
print(p)
return True
for dir in dirs:
next_node = dir(cur_node[0], cur_node[1])
if maze[next_node[0]][next_node[1]] == 0:
queue.append((next_node[0], next_node[1], len(path)-1))
maze[next_node[0]][next_node[1]] = 2 # 标记为已经走过
else:
print("无路可走")
return False solve_maze2(1,1,8,8)

迷宫问题——队列实现

四、链表

import random
from timewrap import * def list_to_buckets(li, iteration):
"""
:param li: 列表
:param iteration: 装桶是第几次迭代
:return:
"""
buckets = [[] for _ in range(10)]
for num in li:
digit = (num // (10 ** iteration)) % 10
buckets[digit].append(num)
return buckets def buckets_to_list(buckets):
return [num for bucket in buckets for num in bucket]
# li = []
# for bucket in buckets:
# for num in bucket:
# li.append(num) @cal_time
def radix_sort(li):
maxval = max(li) #
it = 0
while 10 ** it <= maxval:
li = buckets_to_list(list_to_buckets(li, it))
it += 1
return li li = [random.randint(0,1000) for _ in range(100000)]
radix_sort(li)

列表

def insert_sort(li):
for i in range(1, len(li)):
# i 表示无序区第一个数
tmp = li[i] # 摸到的牌
j = i - 1 # j 指向有序区最后位置
while li[j] > tmp and j >= 0:
#循环终止条件: 1. li[j] <= tmp; 2. j == -1
li[j+1] = li[j]
j -= 1
li[j+1] = tmp def shell_sort(li):
d = len(li) // 2
while d > 0:
for i in range(d, len(li)):
tmp = li[i]
j = i - d
while li[j] > tmp and j >= 0:
li[j+d] = li[j]
j -= d
li[j+d] = tmp
d = d >> 1

练习i——插入

from timewrap import *

@cal_time
def binary_search(li, val):
low = 0
high = len(li) - 1
while low <= high:
mid = (low + high) // 2
if li[mid] > val:
high = mid - 1
elif li[mid] < val:
low = mid + 1
else:
return mid
else:
return -1 def find_a(nums, target):
low = 0
high = len(nums) - 1
while low <= high:
mid = (low + high) // 2
if target <= nums[mid]:
high = mid - 1
else:
low = mid + 1
#[1, 2, 2, 2, 4, 8, 10] if low < len(nums):
return low
else:
return -1 def find_b(nums, target):
low = 0
high = len(nums) - 1
while low <= high:
mid = (low + high) // 2
if target < nums[mid]:
high = mid - 1
else:
low = mid + 1
if low < len(nums):
return low
else:
return -1 @cal_time
def linear_search(li, val):
try:
return li.index(val)
except ValueError:
return -1 li = [1,2,2,2,4,8,10]
print(find_a(li, 10))
def insert_sort(li):
for i in range(1, len(li)):
# i 表示无序区第一个数
tmp = li[i] # 摸到的牌
j = i - 1 # j 指向有序区最后位置
while li[j] > tmp and j >= 0:
#循环终止条件: 1. li[j] <= tmp; 2. j == -1
li[j+1] = li[j]
j -= 1
li[j+1] = tmp def shell_sort(li):
d = len(li) // 2
while d > 0:
for i in range(d, len(li)):
tmp = li[i]
j = i - d
while li[j] > tmp and j >= 0:
li[j+d] = li[j]
j -= d
li[j+d] = tmp
d = d >> 1

Python之数据结构基础的更多相关文章

  1. Python新手学习基础之数据结构-对数据结构的认知

    什么是数据结构? 数据结构是指:相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成. 举个列子来理解这个数据结构: 数据可以比作是书本, 数据结构相当于书架,书存放在书架上, ...

  2. [0x00 用Python讲解数据结构与算法] 概览

    自从工作后就没什么时间更新博客了,最近抽空学了点Python,觉得Python真的是很强大呀.想来在大学中没有学好数据结构和算法,自己的意志力一直不够坚定,这次想好好看一本书,认真把基本的数据结构和算 ...

  3. 《用Python解决数据结构与算法问题》在线阅读

    源于经典 数据结构作为计算机从业人员的必备基础,Java, c 之类的语言有很多这方面的书籍,Python 相对较少, 其中比较著名的一本 problem-solving-with-algorithm ...

  4. (python数据分析)第03章 Python的数据结构、函数和文件

    本章讨论Python的内置功能,这些功能本书会用到很多.虽然扩展库,比如pandas和Numpy,使处理大数据集很方便,但它们是和Python的内置数据处理工具一同使用的. 我们会从Python最基础 ...

  5. Python :数据结构

    LearnPython :数据结构 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .labe ...

  6. python的类基础

    python类的基础: 1,面向对象的基本概念 类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例. 类变量:类变量在整个实例化的 ...

  7. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  8. Python入门篇-基础数据类型之整型(int),字符串(str),字节(bytes),列表(list)和切片(slice)

    Python入门篇-基础数据类型之整型(int),字符串(str),字节(bytes),列表(list)和切片(slice) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Py ...

  9. Python入门篇-基础语法

    Python入门篇-基础语法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编程基础 1>.程序 一组能让计算机识别和执行的指令. 程序 >.算法+ 数据结构= 程 ...

随机推荐

  1. 常用原生JS函数和语法集合

    luoyishan-2017-10-08 1. 输出语句:document.write(""); 2. JS中的注释为// 3. 传统的HTML文档顺序是:document-> ...

  2. deeplearning.ai 人工智能行业大师访谈 Ian Goodfellow 听课笔记

    1. Ian Goodfellow之前是做神经科学研究,在斯坦福上了Andrew NG的课之后,Ian决定投身AI.在寒假他和小伙伴读了Hinton的论文,然后搭了一台用CUDA跑Boltzmann ...

  3. 江西理工大学南昌校区cool code竞赛

    这次比赛原本就是来打酱油的,想做个签到题就走!一开始不知道1002是签到题,一直死磕1001,WA了四发过了,回头一看Rank,三十名,我靠!看了1001的AC率,在我AC之前只有一个人AC了,当时我 ...

  4. Codility:Titanium 2016 challenge:BracketsRotation

    发现codility上很难找到自己的代码,所以来存一下. 用的一种水法,不知道是结论对还是数据水. 处理出所有极大合法串最后就只剩)))((((状的括号,然后枚举右端点,左端点单调. 但是未匹配点数量 ...

  5. JAVA实现网页上传头像

    大概实现就是在页面嵌入一个file类型的input控件,并且将之隐藏,点击上传传递到这个控件上面,选择文件,将图片以base64的方式传递到后台,后台解码器解码,保存图片,并且把图片名字保存到数据库或 ...

  6. OpenStack Horizon创建虚拟机时增加虚拟机OS用户

    背景 通过OpenStack的Horizon使用镜像创建虚拟机(以Ubuntu为例),如果不知道镜像的用户名和密码,在创建好虚拟机之后,无法登录虚拟机的OS.因此,我们需要一种方法,创建虚拟机时增加用 ...

  7. [国嵌攻略][148][MTD系统架构]

    MTD设备概述 Flash在嵌入式系统中是必不可少的,它是bootloader.Linux内核和文件系统的最佳载体.在Linux内核中引入了MTD子系统为NOR Flash和Nand FLash设备提 ...

  8. Spark算子--SortBy

    转载请标明出处http://www.cnblogs.com/haozhengfei/p/39edcbb10b5076599c0e5609b7136b88.html SortBy--Transforma ...

  9. sublime 中HTML快捷键

  10. mysql之repair table 修复表札记

    REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE   tbl_name[,tbl_name] ... [QUICK] [EXTENDED] [USE_FRM] REP ...