In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.

An "axis-aligned plus sign of 1s of order k" has some center grid[x][y] = 1 along with 4 arms of length k-1going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.

Examples of Axis-Aligned Plus Signs of Order k:

Order 1:
000
010
000 Order 2:
00000
00100
01110
00100
00000 Order 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000

Example 1:

Input: N = 5, mines = [[4, 2]]
Output: 2
Explanation:
11111
11111
11111
11111
11011
In the above grid, the largest plus sign can only be order 2. One of them is marked in bold.

Example 2:

Input: N = 2, mines = []
Output: 1
Explanation:
There is no plus sign of order 2, but there is of order 1.

Example 3:

Input: N = 1, mines = [[0, 0]]
Output: 0
Explanation:
There is no plus sign, so return 0.

Note:

  1. N will be an integer in the range [1, 500].
  2. mines will have length at most 5000.
  3. mines[i] will be length 2 and consist of integers in the range [0, N-1].
  4. (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)

这道题给了我们一个数字N,表示一个NxN的二位数字,初始化均为1,又给了一个mines数组,里面是一些坐标,表示数组中这些位置都为0,然后让我们找最大的加型符号。所谓的加型符号是有数字1组成的一个十字型的加号,题目中也给出了长度分别为1,2,3的加型符号的样子。好,理解了题意以后,我们来想想该如何破题。首先,最简单的就是考虑暴力搜索啦,以每个1为中心,向四个方向分别去找,只要任何一个方向遇到了0就停止,然后更新结果res。令博主感到惊讶的是,此题的OJ居然允许Brute Force的解法通过,还是比较大度的,参见代码如下:

解法一:

class Solution {
public:
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) {
int res = ;
vector<vector<int>> mat(N, vector<int>(N, ));
for (auto mine : mines) mat[mine[]][mine[]] = ;
for (int i = ; i < N; ++i) {
for (int j = ; j < N; ++j) {
int k = ;
while (canExpand(mat, N, i, j, k)) ++k;
res = max(res, k);
}
}
return res;
}
bool canExpand(vector<vector<int>>& mat, int N, int x, int y, int k) {
if (x - k < || y - k < || x + k >= N || y + k >= N) return false;
return mat[x - k][y] && mat[x][y + k] && mat[x + k][y] && mat[x][y - k];
}
};

如果我们只想出暴力搜索的解法,就不再管这道题了的话,那在面试的时候就比较悬了。毕竟立方级的时间复杂度实在是太高了,我们必须要进行优化。暴力搜索的时间复杂度之所以高的原因是因为对于每一个1都要遍历其上下左右四个方向,有大量的重复计算,我们为了提高效率,可以对于每一个点,都计算好其上下左右连续1的个数。博主最先用的方法是建立四个方向的dp数组,dp[i][j]表示 (i, j) 位置上该特定方向连续1的个数,那么就需要4个二维dp数组,举个栗子,比如:

原数组:


那么我们建立left数组是当前及其左边连续1的个数,如下所示:


right数组是当前及其右边连续1的个数,如下所示:


up数组是当前及其上边连续1的个数,如下所示:


down数组是当前及其下边连续1的个数,如下所示:


我们需要做的是在这四个dp数组中的相同位置的四个值中取最小的一个,然后在所有的这些去除的最小值中选最大一个返回即可。为了节省空间,我们不用四个二维dp数组,而只用一个就可以了,因为对于每一个特定位置,我们只需要保留较小值,所以在更新的时候,只需要跟原来值相比取较小值即可。在计算down数组的时候,我们就可以直接更新结果res了,因为四个值都已经计算过了,我们就不用再重新在外面开for循环了,参见代码如下:

解法二:

class Solution {
public:
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) {
int res = , cnt = ;
vector<vector<int>> dp(N, vector<int>(N, ));
unordered_set<int> s;
for (auto mine : mines) s.insert(mine[] * N + mine[]);
for (int j = ; j < N; ++j) {
cnt = ;
for (int i = ; i < N; ++i) { // up
cnt = s.count(i * N + j) ? : cnt + ;
dp[i][j] = cnt;
}
cnt = ;
for (int i = N - ; i >= ; --i) { // down
cnt = s.count(i * N + j) ? : cnt + ;
dp[i][j] = min(dp[i][j], cnt);
}
}
for (int i = ; i < N; ++i) {
cnt = ;
for (int j = ; j < N; ++j) { // left
cnt = s.count(i * N + j) ? : cnt + ;
dp[i][j] = min(dp[i][j], cnt);
}
cnt = ;
for (int j = N - ; j >= ; --j) { // right
cnt = s.count(i * N + j) ? : cnt + ;
dp[i][j] = min(dp[i][j], cnt);
res = max(res, dp[i][j]);
}
}
return res;
}
};

我们可以进一步的压缩代码,使其更加简洁,我们发现其实只要分别用四个变量l,r,u,d来表示四个方向连续1的个数,既可以将for循环糅合在一起。注意里面内嵌的for循环其实是两个for循环,由j和k分别控制,那么只要弄清i,j,k坐标的位置,就可以同时更新四个方向的dp值了,最后dp数组更新好了之后,我们再秀一波,只用一个for循环来遍历二维数组,其实就是把二维坐标压缩成了一个数字,再解压缩,参见代码如下:

解法三:

class Solution {
public:
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) {
int res = ;
vector<vector<int>> dp(N, vector<int>(N, N));
for (auto mine : mines) dp[mine[]][mine[]] = ;
for (int i = ; i < N; ++i) {
int l = , r = , u = , d = ;
for (int j = , k = N - ; j < N; ++j, --k) {
dp[i][j] = min(dp[i][j], l = (dp[i][j] ? l + : ));
dp[j][i] = min(dp[j][i], u = (dp[j][i] ? u + : ));
dp[i][k] = min(dp[i][k], r = (dp[i][k] ? r + : ));
dp[k][i] = min(dp[k][i], d = (dp[k][i] ? d + : ));
}
}
for (int k = ; k < N * N; ++k) res = max(res, dp[k / N][k % N]);
return res;
}
};

类似题目:

Cheapest Flights Within K Stops

Minimum Swaps To Make Sequences Increasing

Soup Servings

参考资料:

https://leetcode.com/problems/largest-plus-sign/solution/

https://leetcode.com/problems/largest-plus-sign/discuss/113314/JavaC++Python-O(N2)-solution-using-only-one-grid-matrix

https://leetcode.com/problems/largest-plus-sign/discuss/113350/C++-simple-brute-force-easy-to-understand-with-detailed-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Largest Plus Sign 最大的加型符号的更多相关文章

  1. 【LeetCode】764. Largest Plus Sign 解题报告(Python)

    [LeetCode]764. Largest Plus Sign 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn ...

  2. 【leetcode】Largest Plus Sign

    题目如下: In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the giv ...

  3. [Swift]LeetCode764. 最大加号标志 | Largest Plus Sign

    In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given lis ...

  4. leetcode Largest Rectangle in Histogram 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052343.html 题目链接 leetcode Largest Rectangle in ...

  5. 764. Largest Plus Sign最大的dfs十字架

    [抄题]: 求挖掉一些区域后,能允许出现的最大十字架 In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except t ...

  6. [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  7. 解决VS2012【加载......符号缓慢】的问题

    http://blog.csdn.net/shi0090/article/details/19411777 最近在用VS2012调试时,经常出现"加载......符号缓慢的问题", ...

  8. 解决Visual Studio 加载符号卡死情况

    VS 加载符号 过慢或卡死的情况都可以用这种方法 打开VS的[工具]-[选项]-[调试]-[符号], 如下图所示: 1. 先取消勾选 ”Microsoft符号服务器” 2. 再点击 “清空符号缓存” ...

  9. 在c++运行后出现PDB或者什么巴拉巴拉已经加载符号了的话

    “stl常用排序算法.exe”(Win32): 已加载“E:\vs2015\project\stl常用排序算法\Debug\stl常用排序算法.exe”.已加载符号. “stl常用排序算法.exe”( ...

随机推荐

  1. Linux下ping,telnet,ssh命令的比较

    ping工作在OSI模型的第三层,网络层. 主要用于测试到达目的主机的网络是否连接,不能检测某个端口是否开放. ping使用ICMP协议,不使用某个特定端口. 也可以 ping 域名 ,这样可以直接看 ...

  2. <经验杂谈>C#使用AES加密解密的简单介绍

    AES 算法是基于置换和代替的.置换是数据的重新排列,而代替是用一个单元数据替换另一个.AES 使用了几种不同的技术来实现置换和替换. 以下是我自己用c#研究出来算法Code: /// <sum ...

  3. Struts2学习笔记五 拦截器

    拦截器,在AOP中用于在某个方法或字段被访问之前,进行拦截,然后在之前或之后加入某些操作.拦截是AOP的一种实现策略. Struts2中,拦截器是动态拦截Action调用的对象.它提供了一种机制可以使 ...

  4. winform 适配high dpi

    在 mainifest文件中添加:(新建mainifest文件的时候以下内容是有的,只要取消注释就可以了) <compatibility xmlns="urn:schemas-micr ...

  5. 用Python满足满足自己的“小虚荣”

    首先声明,学习这个只是为了好玩,只是为了好玩,并不是想用这个弄虚作假,做一些不好的事情!一心想做技术人,自制自治! 我们有时候发布一篇日志,或者是一篇博文,总希望自己的浏览量能高点,这样看起来也倍有面 ...

  6. C语言数据类型作业

    一.PTA实验作业 题目1:7-4 打印菱形图案 1. 本题PTA提交列表 2. 设计思路 1.定义m,n(用于计算空格数,输出"* "数),i,j,k(用于循环) 2.输入n,并 ...

  7. 201621123040《Java程序设计》第13周学习总结

    1.本周学习总结 2.为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 2.1简述你想为你的系统增加什么网络功能?设计思路是什么? 创建服务器端端口(3333),当用户以客户端身份访问 ...

  8. github上传时出现error: src refspec master does not match any解决办法

    github上传时出现error: src refspec master does not match any解决办法 这个问题,我之前也遇到过,这次又遇到了只是时间间隔比较长了,为了防止以后再遇到类 ...

  9. 局域网下访问其他计算机搭建的django网页

    1.修改工程目录下的setting.py 文件 ALLOWED_HOSTS = ['*'] #*表示允许访问的ip 如果是添加* 则允许所有同局域网环境的主机访问 2.在完成的django工程下运行以 ...

  10. 自主学习之RxSwift(一) -----Driver

    对于RxSwift,我也是初学者,此系列来记录我学习RxSwift的历程! (一) 想必关于Drive大家一定在RxSwift的Demo中看到过,也一定有些不解,抱着一起学习的态度,来了解一下Driv ...