MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求证:$S_n>n-\dfrac{5}{2}$

证明:显然$a_n\in(0,1)$故由约旦不等式:
$a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right)\ge\dfrac{2}{\pi}\cdot(\dfrac{\pi}{2}a_n)=a_n$, 即$a_n$单调递增,故$a_n\ge a_1=\dfrac{1}{2}$,所以$a_n\in[\dfrac{1}{2},1)$
考虑到不动点$x_0=1,$
$\dfrac{1-a_{n+1}}{1-a_n}=\dfrac{1-\sin\left(\dfrac{\pi}{2}a_n\right)}{1-a_n}=\dfrac{2sin^2\left(\dfrac{\pi}{4}(1-a_n)\right)}{1-a_n}\le\dfrac{2\left(\dfrac{\pi}{4}(1-a_n)\right)^2}{1-a_n}\le \dfrac{\pi^2}{8}(1-a_n)\le\dfrac{\pi^2}{16}$
故$1-a_n\le(1-a_1)\left(\dfrac{\pi^2}{16}\right)^{n-1}$
所以$\sum\limits_{k=1}^n(1-a_k)\le\sum\limits_{k=1}^n{(1-a_1)\left(\dfrac{\pi^2}{16}\right)^{n-1}}=\dfrac{(1-a_1)(1-\left(\dfrac{\pi^2}{16}\right)^{n})}{1-\dfrac{\pi^2}{16}}<\dfrac{5}{2}$
即证$S_n>n-\dfrac{5}{2}$
练习:已知$x_1=\dfrac{3}{4}\pi,2x_{n+1}+\cos x_n-\pi=0$求$\lim\limits_{n\to \infty}{x_n}$
答案:$\dfrac{\pi}{2}$,提示不动点$x_0=\dfrac{\pi}{2}$
MT【311】三角递推数列的更多相关文章
- Loj 538 递推数列
Loj 538 递推数列 出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) . 递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_ ...
- The Nth Item 南昌网络赛(递推数列,分段打表)
The Nth Item \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 给出递推式,求解每次 \(F[n]\) 的值,输出所有 ...
- 九度OJ 1081:递推数列 (递归,二分法)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...
- HDU4565 So Easy! —— 共轭构造、二阶递推数列、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4565 So Easy! Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- 九度OJ 1081 递推数列 -- 矩阵二分乘法
题目地址:http://ac.jobdu.com/problem.php?pid=1081 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= ...
- UVa 12034 - Race(递推 + 杨辉三角)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- LG4723 【模板】常系数线性递推
P4723 [模板]常系数齐次线性递推 题目描述 求一个满足$k$阶齐次线性递推数列${a_i}$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
随机推荐
- H5 66-清除浮动方式二
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python+Appium学习篇之WebView处理
1.认识WebView 实例说明: 当你打开百度阅读APP→VIP全站去广告→用自带的 UI Automator去定位里面的元素,如图: 不管你去定位 '规则详情' '开通'等等,都会定位不到,只 ...
- 一个出色的表格(React实现__ES5语法)
本文主要是<React快速上手开发>一书中,第三章的内容代码整理,因为书中的代码零零散散,所以自己将整理了一下. 排序和编辑功能 <script> var header = [ ...
- day 7-4 互斥锁与队列
一. 基本定义 互斥锁(英语:英语:Mutual exclusion,缩写 Mutex)是一种用于多线程编程中,防止两条线程同时对同一公共资源(比如全局变量)进行读写的机制.该目的通过将代码切片成一个 ...
- 剑指offer(12)
来两道关于链表链接的题目: 题目一: 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. 本题要考虑到其中一条链表是空或者两个都是空的情况. 在每个链表安上一 ...
- python爬虫之git的使用(coding.net的使用)
1.注册coding.net账号,然后登陆. 2.创建项目 套路和github都一样. 1.1.我们在远程仓库上创建了一个仓库,这样的话,我们需要在本地随便建立一个文件普通文件夹,进去以后,执行git ...
- Golang的面向对象实践method
最近在系统的学习go的语法,一切都弄好了之后准备弄个im项目出来玩.在这个过程中会把看到有趣的写法和语法啥的拿出来分析一下. 我一直以为go语言对面向对象没有支持,但是后面看到了类似类的概念,meth ...
- Linux基础学习(14)--日志管理
第十四章——日志管理 一.日志管理简介 1.日志服务: 2.常见日志的作用: 二. rsyslogd日志服务 1.日志文件格式: 2./etc/rsyslog.conf配置文件: 三.日志轮替 1.日 ...
- Python时间的简单使用
1.time.strptime(string[, format]),string -- 时间字符串.format -- 格式化字符串.返回struct_time对象. 把字符串转换为时间格式, ...
- zabbix模板
https://github.com/xm-y/zabbix-community-repos https://monitoringartist.github.io/zabbix-searcher/