MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求证:$S_n>n-\dfrac{5}{2}$

证明:显然$a_n\in(0,1)$故由约旦不等式:
$a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right)\ge\dfrac{2}{\pi}\cdot(\dfrac{\pi}{2}a_n)=a_n$, 即$a_n$单调递增,故$a_n\ge a_1=\dfrac{1}{2}$,所以$a_n\in[\dfrac{1}{2},1)$
考虑到不动点$x_0=1,$
$\dfrac{1-a_{n+1}}{1-a_n}=\dfrac{1-\sin\left(\dfrac{\pi}{2}a_n\right)}{1-a_n}=\dfrac{2sin^2\left(\dfrac{\pi}{4}(1-a_n)\right)}{1-a_n}\le\dfrac{2\left(\dfrac{\pi}{4}(1-a_n)\right)^2}{1-a_n}\le \dfrac{\pi^2}{8}(1-a_n)\le\dfrac{\pi^2}{16}$
故$1-a_n\le(1-a_1)\left(\dfrac{\pi^2}{16}\right)^{n-1}$
所以$\sum\limits_{k=1}^n(1-a_k)\le\sum\limits_{k=1}^n{(1-a_1)\left(\dfrac{\pi^2}{16}\right)^{n-1}}=\dfrac{(1-a_1)(1-\left(\dfrac{\pi^2}{16}\right)^{n})}{1-\dfrac{\pi^2}{16}}<\dfrac{5}{2}$
即证$S_n>n-\dfrac{5}{2}$
练习:已知$x_1=\dfrac{3}{4}\pi,2x_{n+1}+\cos x_n-\pi=0$求$\lim\limits_{n\to \infty}{x_n}$
答案:$\dfrac{\pi}{2}$,提示不动点$x_0=\dfrac{\pi}{2}$
MT【311】三角递推数列的更多相关文章
- Loj 538 递推数列
Loj 538 递推数列 出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) . 递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_ ...
- The Nth Item 南昌网络赛(递推数列,分段打表)
The Nth Item \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 给出递推式,求解每次 \(F[n]\) 的值,输出所有 ...
- 九度OJ 1081:递推数列 (递归,二分法)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...
- HDU4565 So Easy! —— 共轭构造、二阶递推数列、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4565 So Easy! Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- 九度OJ 1081 递推数列 -- 矩阵二分乘法
题目地址:http://ac.jobdu.com/problem.php?pid=1081 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= ...
- UVa 12034 - Race(递推 + 杨辉三角)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- LG4723 【模板】常系数线性递推
P4723 [模板]常系数齐次线性递推 题目描述 求一个满足$k$阶齐次线性递推数列${a_i}$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
随机推荐
- Python常用内建方法:__init__,__new__,__class__的理解
python中所有类都是继承自object, 而object提供了很多原始的内建属性和方法,所以用户自定义的类在Python中也会继承这些内建属性.可以使用dir()函数可以查看,虽然python提供 ...
- 1171: lfx捧杯稳啦!
escription Lfx在复习离散的时候突然想到了一个算法题,毕竟是lfx, 算法题如下: 他想知道这样的问题,先定义1~n中即是3的倍数,又是11的倍数的那些数的和sum, 他想知道sum有多少 ...
- PS打造油画般的风景人像
- iOS 图像处理(一):获取某一点位置的像素
2018.08.04 22:09 字数 671 阅读 203评论 0喜欢 0 通过LAContext evaluatedPolicyDomainState属性可以获取到当前data类型的指纹信息数据, ...
- js总结:增加和减少文本框
<head><script>var count = 0; function add(){ if(count<3) { count++; var x= document.c ...
- Ubuntu16系统中安装htpasswd
htpasswd是Apache附带的程序, htpasswd生成包含用户名和密码的文本文件, 每行内容格式为“用户名:密码”, 用于用户文件的基本身份认证. 当用户浏览某些网页的时候, 浏览器会提示输 ...
- Velocity中判断是否为空
方法一: 使用 #ifnull() 或 #ifnotnull() eg:#ifnull ($foo) 要使用这个特性必须在velocity.properties文件中加入: userdirective ...
- 【学亮IT手记】jQuery text()/html()回调函数实例
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...
- js怎么能取得多选下拉框选中的多个值?
方法:获取多选下拉框对象数组→循环判断option选项的selected属性(true为选中,false为未选中)→使用value属性取出选中项的值.实例演示如下: 1.HTML结构 1 2 3 4 ...
- mybatis插入数据并返回自增Id
上图mybatis的写法,在xxxMapper.xml中: 加入:useGeneratedKeys="true" keyProperty="applyId" k ...