洛谷P1402 酒店之王
传送门:>Here<
题意:有N个人去酒店,酒店共有P个房间,Q道菜。已知每个人喜欢特定的几个房间和几道菜,一个人是满意的当且仅当住了喜欢的房间,吃了喜欢的菜(一个人只能选一个房间一道菜)。问最多有多少人是满意的
思路分析
利用最大流来解。这题看上去有点像二分图匹配,然而并不是“二分图”。显然只要我们建好图然后跑Dinic即可
如何建图呢?最初的一个想法是容量全部为1,每个人连向源点,再分别连向每道菜,再连向每个房间。然而一看样例跑出来就不对……
首先我们考虑到是人去选择,所以房间和菜肯定都是连人的,因此不能像刚才那样菜去连房间。
考虑把人放在中间,源点先连房间,房间连人,人连菜,菜再连到汇点
貌似没有什么问题?如果一共只有一个人,这个人喜欢三种菜和三种房间,那么按照这种做法答案会跑出来3。震惊,一个人竟然跑出来3!
其实问题就出在对最大流的理解上——最大流仅仅只有对管道容量的约束,并没有对每一个点能容纳多少有约束。在这道题里,一个人最多只能选择一个房间和一道菜,因此有必要把每一个人所能够得到的约束为1。这个其实也很好想,只需要把人拆开,每个人连一条容量为1的边到他的附身,这样即使前面的自己得到了多个匹配,经过后面的这一条管道也就只能流过1了,完美地解决了问题
Code
/*By DennyQi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar(); return x * w;
}
int N,P,Q,S,T,x;
int first[MAXM*],nxt[MAXM*],to[MAXM*],cap[MAXM*],flow[MAXM*],num_edge=-;
int level[MAXN],cur[MAXN];
queue <int> q;
inline void add(int u, int v, int c, int f){
to[++num_edge] = v;
cap[num_edge] = c;
flow[num_edge] = f;
nxt[num_edge] = first[u];
first[u] = num_edge;
}
inline bool BFS(){
memset(level, , sizeof(level));
while(!q.empty()) q.pop();
q.push(S);
level[S] = ;
int u,v;
while(!q.empty()){
u = q.front(); q.pop();
for(int i = first[u]; i != -; i = nxt[i]){
v = to[i];
if(!level[v] && cap[i]-flow[i] > ){
level[v] = level[u] + ;
q.push(v);
}
}
}
return level[T]!=;
}
int DFS(int u, int a){
if(u == T || a == ) return a;
int ans = ,v,_f;
for(int& i = cur[u]; i != -; i = nxt[i]){
v = to[i];
if(level[u]+==level[v] && cap[i]-flow[i] > ){
_f = DFS(v, Min(a, cap[i]-flow[i]));
ans += _f, a -= _f;
flow[i] += _f, flow[i^] -= _f;
if(a == ) break;
}
}
return ans;
}
inline void Dinic(){
int ans = ;
while(BFS()){
for(int i = S; i <= T; ++i) cur[i] = first[i];
ans += DFS(S, INF);
}
printf("%d", ans);
}
int main(){
N=r,P=r,Q=r;
S=, T = *N+P+Q+;
memset(first, -, sizeof(first));
for(int i = ; i <= P; ++i){
add(S, i+*N, , );
add(i+*N, S, , );
}
for(int i = ; i <= N; ++i){
for(int j = ; j <= P; ++j){
x=r;
if(x){
add(j+*N, i, , );
add(i, j+*N, , );
}
}
}
for(int i = ; i <= N; ++i){
add(i, i+N, , );
add(i+N, i, , );
}
for(int i = ; i <= N; ++i){
for(int j = ; j <= Q; ++j){
x=r;
if(x){
add(i+N, j+P+*N, , );
add(j+P+*N, i+N, , );
}
}
}
for(int i = ; i <= Q; ++i){
add(P+*N+i, T, , );
add(T, P+*N+i, , );
}
Dinic();
return ;
}
洛谷P1402 酒店之王的更多相关文章
- 洛谷P1402 酒店之王(二分图)
P1402 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只 ...
- 洛谷P1402 酒店之王(网络流)
### 洛谷P1402 题目链接 ### 题目大意:有 n 个人, p 间房间,q 种食物.每个人喜欢一些房间,一些食物,但每间房间.每种食物只能分配给一个人.问最大可以让多少个人满足(当且仅当分配到 ...
- 【刷题】洛谷 P1402 酒店之王
题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...
- 洛谷 [P1402] 酒店之王
有两个约束条件的二分图匹配 我们回忆一下二分图匹配的匈牙利算法的具体流程,它是通过寻找增广路来判断最大匹配数的,我们再观察一下题目中的两个条件,只有两个条件都满足,才算找到一条增广路,所以我们可以分别 ...
- 2018.08.19 洛谷P1402 酒店之王(最大流)
传送门 最大流入门题,把人拆点即可. 代码: #include<bits/stdc++.h> #define N 505 using namespace std; inline int r ...
- 洛谷P2891 Dining P1402 酒店之王【类二分图匹配】题解+代码
洛谷P2891 Dining P1402 酒店之王[类二分图匹配]题解+代码 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的 ...
- 「洛谷P1402」酒店之王 解题报告
P1402 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只 ...
- P1402 酒店之王
P1402 酒店之王 每个人要匹配一个A和一个B,所以这样连边: S向每个房间连边. 每个房间向喜欢这个房间的人连边. 每个人向喜欢的菜连边. 每道菜向T连边. 边权均为1. 注意人要限流. // I ...
- P1402 酒店之王【网络流】【最大流】
P1402 酒店之王 提交 5.39k 通过 2.16k 时间限制 1.00s 内存限制 125.00MB 题目提供者yeszy 难度省选/NOI- 历史分数100 提交记录 查看题解 标签 福建省历 ...
随机推荐
- java 浅克隆 深克隆
对象的克隆是java的一项高级技术,他可以根据给定的对象,获得与其完全相同的另一个对象. 1.浅克隆主要是复制对象的值 2.深克隆:当类存在聚合关系的时候,克隆就必须考虑聚合对象的克隆,可以复制引用类 ...
- 关于C语言内存的一些理解
内存这个大话题 key:心里一定要有内存的逻辑图. 程序是什么? 程序 = 代码 + 数据 代码放在Flash中代码段,可变的数据(全局变量.局部变量)放在内存中. 运行程序的目的是什么? 得到运行结 ...
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- Linux系统安装python3
Centos7系统安装python3 在安装前需要安装依赖环境包,先安装gcc 编译器,命令如下: yum -y install gcc gcc-c++ make 1.首先查看是否安装python,系 ...
- Python—模块介绍
什么是模块? 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码 ...
- Spring配置文件beans.xml头部配置解释
Spring配置文件beans.xml头部配置解释 - EasonJim - 博客园https://www.cnblogs.com/EasonJim/p/6880329.html
- 3proxy使用方法
转自:DRL@fireinice写的教程 ******************************************************************************* ...
- Windows激活
最近重新安装了一下系统,我的系统是Windows10.这就出现了一个问题,如果是Windows7系统的话,可以使用网上的破解工具进行破解操作,使之成为永久破解版.但是Windows10系统,网上对于它 ...
- GRASP软件设计的模式和原则
GRASP 模式:每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的解决方案的核心.”这是关于模式最经典的定义,作者是建筑大师Christopher Alexander.如果是第一次看到这 ...
- 剑指offer(4)
题目: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2 ...