题目分析:

做三个指针然后预处理阶乘就行。

题目代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; const int mod = ; int n,k;
struct node{
int data,num;
}a[maxn]; int ans[maxn]; int fac[maxn],inv[maxn]; int fast_pow(int now,int pw){
if(pw == )return now;
int z = fast_pow(now,pw/);
z = (1ll*z*z)%mod;
if(pw & ) z = (1ll*z*now)%mod;
return z;
} void init(){
fac[] = ;
for(int i=;i<=n;i++) fac[i] = (1ll*fac[i-]*i) %mod;
inv[n] = fast_pow(fac[n],mod-);
for(int i=n;i>=;i--){
inv[i-] = (1ll*inv[i]*i)%mod;
}
} int C(int alpha,int beta){
if(beta > alpha) return ;
return (((1ll*fac[alpha]*inv[beta])%mod)*(inv[alpha-beta]))%mod;
} int cmp(node alpha,node beta){return alpha.data > beta.data;} void read(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) {
scanf("%d",&a[i].data),a[i].num = i;
}
sort(a+,a+n+,cmp);
} void work(){
init();
int pts = ,ok = ;
while(pts <= n && a[pts].data* >= a[].data) pts++;
for(int i=;i<=n;i++){
int nxt = i; while(nxt+<=n && a[nxt+].data == a[i].data) nxt++;
while(pts <= n && a[pts].data* >= a[i].data) pts++;
int forw = n-(pts-nxt),res = C(forw,k);
for(int j=i;j<=nxt;j++) ans[a[j].num] += res;
while(ok <= nxt && a[ok].data >= a[nxt].data*) ok++;
int newm = k-(nxt-ok+);
if(newm >= ){
forw = n-(nxt-ok+),res = C(forw,newm);
for(int j=i;j<=nxt;j++) ans[a[j].num] += res,ans[a[j].num] %= mod;
}
i = nxt;
}
for(int i=;i<=n;i++) if(a[i].data == ) ans[a[i].num] = C(n,k);
for(int i=;i<=n;i++) printf("%d\n",ans[i]);
} int main(){
read();
work();
return ;
}

LOJ6432 [PKUSC2018] 真实排名 【组合数】的更多相关文章

  1. [LOJ6432] [PKUSC2018] 真实排名

    题目链接 LOJ:https://loj.ac/problem/6432 Solution 假设我们当前要算\(x\)的答案,分两种情况讨论: \(x\)没被翻倍,那么\([a_x/2,a_x]\)这 ...

  2. BZOJ_5368_[Pkusc2018]真实排名_组合数

    BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...

  3. [PKUSC2018]真实排名——线段树+组合数

    题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...

  4. 【LOJ4632】[PKUSC2018]真实排名

    [LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...

  5. [PKUSC2018]真实排名

    [PKUSC2018]真实排名 题目大意: 有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\).定义一个人的排名为\(n\)个人中成绩不小于他的总人 ...

  6. LOJ #6432. 「PKUSC2018」真实排名(组合数)

    题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...

  7. bzoj5368 [Pkusc2018]真实排名

    题目描述: bz luogu 题解: 组合数计数问题. 首先注意排名指的是成绩不小于他的选手的数量(包括他自己). 考虑怎么增大才能改变排名. 小学生都知道,对于成绩为$x$的人,让他自己不动并让$\ ...

  8. BZOJ5368:[PKUSC2018]真实排名(组合数学)

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...

  9. bzoj 5368: [Pkusc2018]真实排名

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...

随机推荐

  1. Item 21: 比起直接使用new优先使用std::make_unique和std::make_shared

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 让我们先从std::make_unique和std::make_s ...

  2. Item 20: 使用std::weak_ptr替换会造成指针悬挂的类std::shared_ptr指针

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 矛盾的是,我们很容易就能创造出一个和std::shared_ptr ...

  3. Meterpreter常⻅见⽤用法

    0x01 背景 meterpreter作为后渗透模块有多种类型,并且命令由核⼼心命令和扩展库命令组成,极⼤大的丰富了了攻击⽅方式. 需要说明的是meterpreter在漏漏洞洞利利⽤用成功后会发送第二 ...

  4. HDU - 1542 扫描线入门+线段树离散化

    扫描线算法+线段树维护简介: 像这种求面积的并集的题目,就适合用扫描线算法解决,具体来说就是这样 类似这种给出点的矩形的对角的点的坐标,然后求出所有矩形面积的交集的问题,可以采用扫描线算法解决.图如下 ...

  5. 广州商学院16级软工一班&二班-第一次作业成绩

    广州商学院16级软工一班&二班-第一次作业成绩 作业地址 16软工一班 16软工二班 总结 本次作业反映了几个比较严重的问题: 不按要求阅读相应的文章,回答问题只是敷衍几句. 部分同学的版式混 ...

  6. Python容器

    列表 list 1.列表的格式为,把值放入[ ]中 >>> lis = ['a', 1, ['a', 'c', 1]] 2.列表中可以嵌套任何类型 索引 因为列表是有序的,那么我们可 ...

  7. python 中的re模块,正则表达式

    一.re模块 re模块中常用的方法. match: 默认从字符串开头开始匹配,re.match('fun', 'funny') 可以匹配出来 'fun' match(pattern, string, ...

  8. python_函数名的应用、闭包、装饰器

    0.动态传参内容补充: 0.1 单纯运行如下函数不会报错. def func1(*args,**kwargs): pass func1() 0.2 *的魔性用法 * 在函数定义的时候,代表聚合. *在 ...

  9. 多线程系列之七:Read-Write Lock模式

    一,Read-Write Lock模式 在Read-Write Lock模式中,读取操作和写入操作是分开考虑的.在执行读取操作之前,线程必须获取用于读取的锁.在执行写入操作之前,线程必须获取用于写入的 ...

  10. mysql 5.7:show_compatibility_56

    show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...