51 Nod 1079 中国剩余定理(孙子定理)NOTE:互质情况
1079 中国剩余定理
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
收起
输入
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
输出
输出符合条件的最小的K。数据中所有K均小于10^9。
输入样例
3
2 1
3 2
5 3
输出样例
23
孙子定理
例:求符合kk%a=2,kk%b=3,kk%c=5的最小kk.
ans=bc*i+ac*j+ab*k;
以a为例:ans%a=bc*i%a=2(另外两个都是a的倍数)
(bc*x)%a=1;//bc*x=a*y+1拓展欧几里得定理求解
2%a=2;
bc*i%a=(bc*x)*2%a=2;//乘数之余等于余数之乘
则ans=(bc*x1)*2+(ac*x2)*3+(ab*x3)*5; 解kk=ans%(abc);
#include<iostream>
#define ll long long
using namespace std;
ll a[13],b[13];
void exgcd(ll m,ll n,ll &x,ll &y)
{
if(!n){
x=1;y=0;
return ;
}
exgcd(n,m%n,x,y);
ll tmp=x;
x=y;//x=y2
y=tmp-(m/n)*y;//y1=x2-(m/n)*y2
}
int main()
{
int n;
ll sum=1;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lld%lld",&a[i],&b[i]),sum*=a[i];
ll ans=0;
for(int i=0;i<n;i++){
ll x,y;
ll m=sum/a[i];
exgcd(m,a[i],x,y);//m*x=a[i]*y+1;
ans=(ans+m*b[i]*x)%sum;
}
if(ans<0)
ans+=sum;
printf("%lld\n",ans%sum);
return 0;
}
51 Nod 1079 中国剩余定理(孙子定理)NOTE:互质情况的更多相关文章
- HDU3579Hello Kiki(中国剩余定理)(不互质的情况)
One day I was shopping in the supermarket. There was a cashier counting coins seriously when a littl ...
- 51 nod 1079 中国剩余定理
1079 中国剩余定理 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % ...
- FJNU2018低程A 逃跑路线(Lucas + 中国剩余定理 + LGV定理)题解
题目描述 n个人在w*h的监狱里面想要逃跑,已知他们的同伙在坐标(bi,h)接应他们,他们现在被关在(ai,1)现在他们必须要到同伙那里才有逃出去的机会,这n个人又很蠢只会从(x,y)->(x+ ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- 中国剩余定理&Lucas定理&按位与——hdu 5446
链接: hdu 5446 http://acm.hdu.edu.cn/showproblem.php?pid=5446 题意: 给你三个数$n, m, k$ 第二行是$k$个数,$p_1,p_2,p_ ...
- 51nod 1079 中国剩余定理模板
中国剩余定理就是同余方程组除数为质数的特殊情况 我直接用同余方程组解了. 记得exgcd后x要更新 还有先更新b1再更新m1,顺序不能错!!(不然会影响到b1的更新) #include<cstd ...
- 51Nod 1079 中国剩余定理 Label:数论
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23. Input 第1行:1个数 ...
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- 【CRT】中国剩余定理简介
中国剩余定理(CRT) 中国剩余定理出自中国的某本古书,似乎是孙子兵法?(雾 其中有这样一个问题: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 即,对于这样一个方程组: \[ ...
随机推荐
- java final、finally、finalize
- google 变量命名规则简要记录
1.文件命名规则 好的文件名命名可以很清晰的看出这个文件将要承载的内容,Google给出的规则为:文件名要全部小写, 可以包含下划线 (_) 或连字符 (-). 按项目约定来, 例如:cmd_save ...
- js知识巩固
1.数组操作中使用splice和slice进行删除数组的区别! splice会对原数组进行操作,返回的是被删除元素组成的数组,原数组会被进行改变即变成删除后的数组,用于删除列表中的元素,arr.spl ...
- python3+selenium入门16-窗口截图
有时候需要把一些浏览器当前窗口截图下来,比如操作抱错的时候.WebDriver类下.get_screenshot_as_file()方法可窗口截图,需要传入一个截图文件名的路径.window要用\\当 ...
- RESTful API 设计指南(转)
网络应用程序,分为前端和后端两个部分.当前的发展趋势,就是前端设备层出不穷(手机.平板.桌面电脑.其他专用设备......). 因此,必须有一种统一的机制,方便不同的前端设备与后端进行通信.这导致AP ...
- MongoVUE 使用教程
MongoVUE是一款针对MongoDB的客户端工具,现在连接数据库也叫数据模式有2种方法,一种是B/S结构的数据库,通过网页就可以访问.另外一种就是基于C/S客户端的连接方式,本次为大家分享的这一个 ...
- Ubuntu 18.04使用sudo pip3报错
在使用sudo pip3 install python库的时候出现如下警告: The directory '/home/lzhu/.cache/pip/http' or its parent dire ...
- 求逆序对 ----归并排 & 树状数组
网上看了一些归并排求逆序对的文章,又看了一些树状数组的,觉得自己也写一篇试试看吧,然后本文大体也就讲个思路(没有例题),但是还是会有个程序框架的 好了下面是正文 归并排求逆序对 树状数组求逆序对 一. ...
- 基于数组的循环队列(C++模板实现)
循环队列使用数组实现的话,简单.方便.之前实现的队列,当尾端索引到达队列最后的时候,无论前面是否还有空间,都不能再添加数据了.循环队列使得队列的存储单元可以循环利用,它需要一个额外的存储单元来判断队列 ...
- python第13天
装饰器 装饰器本质上就是一个python函数,他可以让其他函数在不需要做任何改动的前提下,增加额外的功能,装饰器的返回值也是一个函数对象. 装饰器的应用场景:比如插入日志,性能测试,事务处理,缓存等等 ...