之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记。在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域,在一定程度上缓解了这种问题。不过,当网络的层数急剧增加时,BP 算法中导数的累乘效应还是很容易让梯度慢慢减小直至消失。这篇文章中介绍的深度残差 (Deep Residual) 学习网络可以说根治了这种问题。下面我按照自己的理解浅浅地水一下 Deep Residual Learning 的基本思想,并简单介绍一下深度残差网络的结构。

基本思想

回到最开始的问题,为什么深度神经网络会难以训练?根源在于 BP 的时候我们需要逐层计算导数并将这些导数相乘。这些导数如果太小,梯度就容易消失,反之,则会爆炸。我们没法从 BP 算法的角度出发让这个相乘的导数链消失,因此,可行的方法就是控制每个导数的值,让它们尽量靠近 1,这样,连乘后的结果不会太小,也不会太大。

现在,我们就从导数入手,看看如何实现上面的要求。由于梯度消失的问题比梯度爆炸更常见,因此只针对梯度消失这一点进行改进。

假设我们理想中想让网络学习出来的函数是 \(F(x; {W_i})\),但由于它的导数 \(\frac{\partial F}{\partial x}\) 太小,所以训练的时候梯度就消失了。所谓太小,就是说 \(\frac{\partial F}{\partial x} \approx 0\),那么,我们何不在这个导数的基础上加上 1 或者减去 1,这样梯度不就变大了吗?(这里的 1 是为了满足之前提到的梯度靠近 1 这一要求,事实上,只要能防止梯度爆炸,其他数值也是可以的,不过作者在之后的实验中证明,1 的效果最好)

按照这种思路,我们现在想构造一个新的函数,让它的导数等于 \(\frac{\partial F}{\partial x}+1\)。由这个导数反推回去,很自然地就得到一个我们想要的函数:\(H(x)=F(x)+x\),它的导数为:\(\frac{\partial H}{\partial x} = \frac{\partial F}{\partial x}+1\)。这个时候你可能会想,如果将原来的 \(F(x)\) 变成 \(H(x)\),那网络想要提取的特征不就不正确了吗,这个网络还有什么用?不错,我们想要的最终函数是 \(F(x; {W_i})\),这个时候再加个 \(x\) 上去,结果肯定不是我们想要的。但是,为什么一定要让网络学出 \(F(x; {W_i})\)?为什么不用 \(H(x)\) 替换原本的 \(F(x;{W_i})\),而将网络学习的目标调整为:\(F(x)=H(x)-x\)?要知道,神经网络是可以近似任何函数的,只要让网络学出这个新的 \(F(x)\),那么我们自然也就可以通过 \(H(x)=F(x)+x\) 得到最终想要的函数形式。作者认为,通过这种方式学习得到的 \(H(x)\) 函数,跟当初直接让网络学习出的 \(F(x, {W_i})\),效果上是等价的,但前者却更容易训练。

==================== UPDATE 2018.1.23 =====================

时隔几个月重新看这篇文章,发现当初的理解存在一个巨大的问题,在此,对那些被我误导的同学深深道歉

论文笔记:Deep Residual Learning的更多相关文章

  1. 论文笔记——Deep Residual Learning for Image Recognition

    论文地址:Deep Residual Learning for Image Recognition ResNet--MSRA何凯明团队的Residual Networks,在2015年ImageNet ...

  2. [论文理解]Deep Residual Learning for Image Recognition

    Deep Residual Learning for Image Recognition 简介 这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新 ...

  3. [论文阅读] Deep Residual Learning for Image Recognition(ResNet)

    ResNet网络,本文获得2016 CVPR best paper,获得了ILSVRC2015的分类任务第一名. 本篇文章解决了深度神经网络中产生的退化问题(degradation problem). ...

  4. Deep Residual Learning for Image Recognition论文笔记

    Abstract We present a residual learning framework to ease the training of networks that are substant ...

  5. Deep Residual Learning

    最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个. 开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后 ...

  6. Deep Residual Learning for Image Recognition这篇文章

    作者:何凯明等,来自微软亚洲研究院: 这篇文章为CVPR的最佳论文奖:(conference on computer vision and pattern recognition) 在神经网络中,常遇 ...

  7. 深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中 ...

  8. Deep Residual Learning for Image Recognition (ResNet)

    目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vi ...

  9. Deep Residual Learning for Image Recognition

    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun           Microsoft Research {kahe, v-xiangz, v-sh ...

随机推荐

  1. linux简单优化

    1.简单优化 #关闭firewalld,selinux,NetworkManager systemctl(管理服务的命令) stop(关服务) firewalld (服务名称,d是demo的意思) s ...

  2. chrome截图全网页

    1.F12 2.ctrl+shift+p 3.输入:capture 4.选择Capture full size screenshot

  3. mysql 遍历所有的库并根据表和sql语句备份

    建库.用户语句 create database test_hb; create user ' test_hb'@'%' identified by '123456'; grant all privil ...

  4. 利用salt搭建hadoop集群

    自动化工具有很多..今天总结一下salt安装hadoop 步骤,学习过程. 1,机器列表 hosts文件    只需要将namenode的两台机器上配置 ,不解释了. 2.salt-master在10 ...

  5. HDU - 6393 Traffic Network in Numazu(树链剖分+基环树)

    http://acm.hdu.edu.cn/showproblem.php?pid=6393 题意 给n个点和n条边的图,有两种操作,一种修改边权,另一种查询u到v的最短路. 分析 n个点和n条边,实 ...

  6. 解决 git push Failed to connect to 127.0.0.1 port 8-87: 拒绝连接

    今天在本地使用nsq 测试的时候总是提示端口被占用 通过查看环境变量确实存在该代理 如何解决 使用netstat 命令查看端口被占用情况 根据经常ID号查看是哪一个进程正在被占用 如何还是不行,则在[ ...

  7. solrj管理索引库

    solrj管理索引库 1.1. 什么是solrJ solrj是访问Solr服务的java客户端,提供索引和搜索的请求方法,SolrJ通常在嵌入在业务系统中,通过SolrJ的API接口操作Solr服务, ...

  8. Vuex笔记

    Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式 Vuex - 状态管理器,可以管理你的数据状态(类似于 React的 Redux) 一个 Vuex 应用的核心是 store(仓库,一个 ...

  9. c++函数解析

    1.getline() 用getline读取文本 int main() { string line; getline(cin,line,'$');//'$'can change to other co ...

  10. 关于PHP的加载类操作以及其他两种魔术方法应用

    <?php 加载类//include("./Ren.class.php");//include "./Ren.class.php";include_onc ...